Remarks on Normalized Solutions for L2-Critical Kirchhoff Problems

被引:8
|
作者
Zeng, Yonglong [1 ,2 ]
Chen, Kuisheng [1 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Machinery & Automat, Wuhan 430065, Peoples R China
[2] Res Inst Wuhan Iron & Steel Grp Corp, Wuhan 430080, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2016年 / 20卷 / 03期
关键词
Kirchhoff equation; L-2-critical; Minimization problems; Variational method; CONCENTRATION-COMPACTNESS PRINCIPLE; SCHRODINGER-POISSON; POSITIVE SOLUTIONS; R-N; EQUATIONS; EXISTENCE; CALCULUS; R-3;
D O I
10.11650/tjm.20.2016.6548
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a constraint minimization problem on S-c = {u epsilon H-1 c, c epsilon (0, c*)} for the following L-2-critical Kirchhoff type functional: E-alpha(u) =a/2 integral(RN) vertical bar del u vertical bar(2) dx + b/4 (integral(RN) vertical bar del vertical bar(2) dx)(2) + 1/alpha+2 integral(RN) V (x) vertical bar u vertical bar(alpha+2) dx - N/2N+8 integral(R2) vertical bar u vertical bar(2N+8/N) dx where N <= 3, a, b > 0 are constants, a epsilon [0, 8/N) and V(x) epsilon L infinity (R-N) is a suitable potential. We prove that the problem has at least one minimizer if alpha epsilon [2, 8/N) and the energy of the minimization problem is negative. Moreover, some non-existence results are obtained when the energy of the problem equals to zero.
引用
收藏
页码:617 / 627
页数:11
相关论文
共 50 条
  • [31] Multiplicity and concentration of normalized solutions for a Kirchhoff type problem with L2-subcritical nonlinearities
    Ni, Yangyu
    Sun, Jijiang
    Chen, Jianhua
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2024, 16 (03): : 633 - 654
  • [32] Normalized solutions to the Kirchhoff Equation with triple critical exponents in R4
    Fang, Xingling
    Ou, Zengqi
    Lv, Ying
    APPLIED MATHEMATICS LETTERS, 2024, 153
  • [33] NORMALIZED SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS WITH COMBINED NONLINEARITIES: THE SOBOLEV CRITICAL CASE
    Feng, Xiaojing
    Liu, Haidong
    Zhang, Zhitao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, 43 (08) : 2935 - 2972
  • [34] ON GROUND STATE SOLUTIONS FOR THE NONLINEAR KIRCHHOFF TYPE PROBLEMS WITH A GENERAL CRITICAL NONLINEARITY
    Xie, Weihong
    Chen, Haibo
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 53 (02) : 519 - 545
  • [35] EXISTENCE OF MULTIPLE SOLUTIONS TO ELLIPTIC PROBLEMS OF KIRCHHOFF TYPE WITH CRITICAL EXPONENTIAL GROWTH
    Aouaoui, Sami
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [36] An Inhomogeneous, L2-Critical, Nonlinear Schrodinger Equation
    Genoud, Francois
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2012, 31 (03): : 283 - 290
  • [37] Solutions for a Kirchhoff type problem with critical exponent in RN
    Zhou, Fen
    Yang, Minbo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 494 (02)
  • [38] Normalized multi-bump solutions of nonlinear Kirchhoff equations
    Shu, Zhidan
    Zhang, Jianjun
    AIMS MATHEMATICS, 2024, 9 (06): : 16790 - 16809
  • [39] Normalized Solutions of Nonautonomous Kirchhoff Equations: Sub- and Super-critical Cases
    Chen, Sitong
    Radulescu, Vicentiu D.
    Tang, Xianhua
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (01) : 773 - 806
  • [40] Bound state solutions of Kirchhoff type problems with critical exponent
    Xie, Qilin
    Ma, Shiwang
    Zhang, Xu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (02) : 890 - 924