Double Sobolev gradient preconditioning for nonlinear elliptic problems

被引:2
作者
Axelsson, O.
Karatson, J.
机构
[1] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
[2] Inst Geon AS CR, Ostrava, Czech Republic
[3] ELTE Univ, Dept Appl Anal, H-1117 Budapest, Hungary
关键词
Sobolev gradient preconditioning; nonlinear diffusion problem; Picard-type iteration; discrete Laplacian;
D O I
10.1002/num.20207
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mixed variable formulation of a second-order nonlinear diffusion problem leads to a finite element matrix in a product form. This form enables the efficient updating of the nonlinearity in a Picard type iteration method, in which the preconditioner involves twice a discrete Laplacian. The article gives a conditioning analysis of this method, based on analytic investigations in the corresponding Sobolev function space that reveal the behaviour of this preconditioning. The further generalization of the preconditioner can produce arbitrarily low condition numbers by proper subdivisions of Q, while still no differentiability of the nonlinear diffusion coefficient is required. (c) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:1018 / 1036
页数:19
相关论文
共 13 条