Anomalous diffusion and fractional advection-diffusion equation

被引:36
|
作者
Chang, FX [1 ]
Chen, J [1 ]
Huang, W [1 ]
机构
[1] Changjiang Water Resources Commis, Yangtze River Sci Res Inst, Wuhan 430010, Peoples R China
关键词
diffusion; fractional calculus; Levy distribution; Fick's law;
D O I
10.7498/aps.54.1113
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Anomalous diffusion happens often in nature and society systems. In this paper, we develop a non-local method with temporal and spatial correlations to introduce a fractional order advection-diffusion equation based on the usually used local 2-nd order advection-dispersion equation. In this equation, the diffusion is a fractional order derivative of time and space. And then, we extend the classical Fick's law for standard diffusion to a general fractional Fick's law. The fractional Fick's law shows that the current is related to the concentrations all over the space, also depends on the previous history and the initial condition. The solution of this fractional order advection-dispersion equation is fractional Levy probability distribution density. And the mean square displacement is a nonlinear function of time.
引用
收藏
页码:1113 / 1117
页数:5
相关论文
共 18 条
  • [1] The fractional-order governing equation of Levy motion
    Benson, DA
    Wheatcraft, SW
    Meerschaert, MM
    [J]. WATER RESOURCES RESEARCH, 2000, 36 (06) : 1413 - 1423
  • [2] FRACTIONAL DIFFUSION EQUATION FOR TRANSPORT PHENOMENA IN RANDOM-MEDIA
    GIONA, M
    ROMAN, HE
    [J]. PHYSICA A, 1992, 185 (1-4): : 87 - 97
  • [3] FRACTIONAL DIFFUSION EQUATION ON FRACTALS - ONE-DIMENSIONAL CASE AND ASYMPTOTIC-BEHAVIOR
    GIONA, M
    ROMAN, HE
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (08): : 2093 - 2105
  • [4] Fractional diffusion: probability distributions and random walk models
    Gorenflo, R
    Mainardi, F
    Moretti, D
    Pagnini, G
    Paradisi, P
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 305 (1-2) : 106 - 112
  • [5] Discrete random walk models for space-time fractional diffusion
    Gorenflo, R
    Mainardi, F
    Moretti, D
    Pagnini, G
    Paradisi, P
    [J]. CHEMICAL PHYSICS, 2002, 284 (1-2) : 521 - 541
  • [6] Kolokoltsov V, 2001, J. Math. Sci., V105, P2569, DOI DOI 10.1023/A:1011359219202
  • [7] Mainardi F., 2001, Fract. Calc. Appl. Anal, V4, P153
  • [8] MEESHAERT MM, 1998, PHYS REV E, V59, P5026
  • [9] MEESHAERT MM, 2002, PHYS REV E, V65, P41103
  • [10] FRACTIONAL MODEL EQUATION FOR ANOMALOUS DIFFUSION
    METZLER, R
    GLOCKLE, WG
    NONNENMACHER, TF
    [J]. PHYSICA A, 1994, 211 (01): : 13 - 24