Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection - diffusion and KdV equations

被引:113
作者
Xu, Yan [1 ]
Shu, Chi-Wang
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[2] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
基金
美国国家科学基金会;
关键词
local discontinuous Galerkin method; error estimate; KdV equation; Nonlinear convection-diffusion equation; FINITE-ELEMENT-METHOD; CONSERVATION-LAWS; SMOOTH SOLUTIONS;
D O I
10.1016/j.cma.2006.10.043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we provide L-2 error estimates for the semi-discrete local discontinuous Galerkin methods for nonlinear convection-diffusion equations and KdV equations with smooth solutions. The main technical difficulty is the control of the inter-element jump terms which arise because of the nonlinearity of the PDEs and the discontinuous nature of the numerical method. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:3805 / 3822
页数:18
相关论文
共 37 条
[1]  
[Anonymous], 1975, FINITE ELEMENT METHO
[2]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[3]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279
[4]   A discontinuous hp finite element method for convection-diffusion problems [J].
Baumann, CE ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 175 (3-4) :311-341
[5]  
Castillo P, 2002, MATH COMPUT, V71, P455, DOI 10.1090/S0025-5718-01-01317-5
[6]   An a priori error analysis of the local discontinuous Galerkin method for elliptic problems [J].
Castillo, P ;
Cockburn, B ;
Perugia, I ;
Shötzau, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (05) :1676-1706
[7]  
Castillo P, 2000, LECT NOTES COMP SCI, V11, P285
[8]   Foreword [J].
Cockburn, B ;
Shu, CW .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 22-3 (01) :1-3
[9]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[10]   Runge-Kutta discontinuous Galerkin methods for convection-dominated problems [J].
Cockburn, Bernardo ;
Shu, Chi-Wang .
Journal of Scientific Computing, 2001, 16 (03) :173-261