Short-Term Wind Power Forecasting Method Based on Mode Decomposition and Feature Extraction

被引:0
作者
Li, Chuang [1 ]
Kong, Xiangyu [1 ]
Wang, Xingguo [2 ]
Zheng, Feng [3 ]
Chen, Zhengguang [2 ]
Zhou, Zexin [2 ]
机构
[1] Tianjin Univ, Sch Elect Automat & Informat Engn, Tianjin, Peoples R China
[2] China Elect Power Res Inst, Grid Safety & Energy Conservat, Beijing, Peoples R China
[3] State Grid Hebei Elect Power Co Ltd, Shijiazhuang Power Supply Branch, Shijiazhuang, Hebei, Peoples R China
来源
2019 22ND INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2019) | 2019年
基金
中国国家自然科学基金;
关键词
wind power forecasting; ensemble empirical mode decomposition; generalized mutual information; least squares support vector machine; feature extraction; SPEED;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate and stable wind power forecasting is an inevitable requirement for efficient use of renewable energy. This paper proposes a short-term wind power combination forecasting method based on mode decomposition and feature extraction. The original wind speed time series is decomposed into multiple subsequences by the ensemble empirical mode decomposition (EEMD). The generalized mutual information (GMI) is used to extract the optimal input feature set of each subsequence. The prediction values of each subsequence are obtained based on the least squares support vector machine (LSSVM) model, and then the final prediction results are obtained by combining them. Finally, the paper proves that the proposed method can predict short-term wind power more accurately and stably by setting up the contrast experiment.
引用
收藏
页码:1735 / 1739
页数:5
相关论文
共 50 条
  • [41] Short-Term Electrical Load Forecasting With Multidimensional Feature Extraction
    Kim, Nakyoung
    Park, Hyunseo
    Lee, Joohyung
    Choi, Jun Kyun
    IEEE TRANSACTIONS ON SMART GRID, 2022, 13 (04) : 2999 - 3013
  • [42] A Short-Term Prediction Model of Wind Power with Outliers: An Integration of Long Short-Term Memory, Ensemble Empirical Mode Decomposition, and Sample Entropy
    Du, Yuanzhuo
    Zhang, Kun
    Shao, Qianzhi
    Chen, Zhe
    SUSTAINABILITY, 2023, 15 (07)
  • [43] CPTCFS: CausalPatchTST incorporated causal feature selection model for short-term wind power forecasting of newly built wind farms ☆
    Zhao, Hang
    Xu, Peidong
    Gao, Tianlu
    Zhang, Jun Jason
    Xu, Jian
    Gao, David Wenzhong
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 160
  • [44] Deep Learning Method Based on Gated Recurrent Unit and Variational Mode Decomposition for Short-Term Wind Power Interval Prediction
    Wang, Ruoheng
    Li, Chaoshun
    Fu, Wenlong
    Tang, Geng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (10) : 3814 - 3827
  • [45] Mode decomposition method integrating mode reconstruction, feature extraction, and ELM for tourist arrival forecasting
    Tang Lingyu
    Wang Jun
    Zhao Chunyu
    CHAOS SOLITONS & FRACTALS, 2021, 143
  • [46] Short-term wind speed prediction: Hybrid of ensemble empirical mode decomposition, feature selection and error correction
    Jiang, Yan
    Huang, Guoqing
    ENERGY CONVERSION AND MANAGEMENT, 2017, 144 : 340 - 350
  • [47] A combined model based on secondary decomposition technique and grey wolf optimizer for short-term wind power forecasting
    Su, Zhongde
    Zheng, Bowen
    Lu, Huacai
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [48] A hybrid model for deep learning short-term power load forecasting based on feature extraction statistics techniques
    Fan, Guo-Feng
    Han, Ying-Ying
    Li, Jin-Wei
    Peng, Li-Ling
    Yeh, Yi-Hsuan
    Hong, Wei-Chiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [49] Probabiistic Short-term Wind Power Forecasting Based on Deep Neural Networks
    Wu, Wenzu
    Chen, Kunjin
    Qiao, Ying
    Lu, Zongxiang
    2016 INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS (PMAPS), 2016,
  • [50] Short-term wind power forecasting based on Attention Mechanism and Deep Learning
    Xiong, Bangru
    Lou, Lu
    Meng, Xinyu
    Wang, Xin
    Ma, Hui
    Wang, Zhengxia
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 206