Short-Term Wind Power Forecasting Method Based on Mode Decomposition and Feature Extraction

被引:0
作者
Li, Chuang [1 ]
Kong, Xiangyu [1 ]
Wang, Xingguo [2 ]
Zheng, Feng [3 ]
Chen, Zhengguang [2 ]
Zhou, Zexin [2 ]
机构
[1] Tianjin Univ, Sch Elect Automat & Informat Engn, Tianjin, Peoples R China
[2] China Elect Power Res Inst, Grid Safety & Energy Conservat, Beijing, Peoples R China
[3] State Grid Hebei Elect Power Co Ltd, Shijiazhuang Power Supply Branch, Shijiazhuang, Hebei, Peoples R China
来源
2019 22ND INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2019) | 2019年
基金
中国国家自然科学基金;
关键词
wind power forecasting; ensemble empirical mode decomposition; generalized mutual information; least squares support vector machine; feature extraction; SPEED;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate and stable wind power forecasting is an inevitable requirement for efficient use of renewable energy. This paper proposes a short-term wind power combination forecasting method based on mode decomposition and feature extraction. The original wind speed time series is decomposed into multiple subsequences by the ensemble empirical mode decomposition (EEMD). The generalized mutual information (GMI) is used to extract the optimal input feature set of each subsequence. The prediction values of each subsequence are obtained based on the least squares support vector machine (LSSVM) model, and then the final prediction results are obtained by combining them. Finally, the paper proves that the proposed method can predict short-term wind power more accurately and stably by setting up the contrast experiment.
引用
收藏
页码:1735 / 1739
页数:5
相关论文
共 50 条
  • [31] Forecast of short-term wind power based on a novel hybrid method
    Wu, Dinghui
    Huang, Haibo
    Xiao, Ren
    Gao, Cong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2020, 234 (08) : 937 - 947
  • [32] Short-Term Wind Power Forecasting Based on T-S Fuzzy Model
    Liu, Fang
    Li, Ranran
    Li, Yong
    Cao, Yijia
    Panasetsky, Daniil
    Sidorov, Denis
    2016 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2016, : 414 - 418
  • [33] Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory
    Lopez, Erick
    Valle, Carlos
    Allende, Hector
    Gil, Esteban
    Madsen, Henrik
    ENERGIES, 2018, 11 (03)
  • [34] Short-term Wind Power Forecasting Based on Maximum Correntropy Criterion
    Wang Wenhai
    Duan Jiandong
    2014 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2014,
  • [35] Wind Power Short-Term Forecasting Hybrid Model Based on CEEMD-SE Method
    Wang, Keke
    Niu, Dongxiao
    Sun, Lijie
    Zhen, Hao
    Liu, Jian
    De, Gejirifu
    Xu, Xiaomin
    PROCESSES, 2019, 7 (11)
  • [36] Short-term Wind Power Forecasting Based on Spatial Correlation and Artificial Neural Network
    Chen, Qin
    Folly, Komla
    2020 INTERNATIONAL SAUPEC/ROBMECH/PRASA CONFERENCE, 2020, : 208 - 213
  • [37] Development of Short-Term Wind Power Forecasting Methods
    Cao, Bo
    Chang, Liuchen
    2022 IEEE 7TH SOUTHERN POWER ELECTRONICS CONFERENCE, SPEC, 2022,
  • [38] Short-term wind power forecasting using hybrid method based on enhanced boosting algorithm
    Jiang, Yu
    Chen, Xingying
    Yu, Kun
    Liao, Yingchen
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2017, 5 (01) : 126 - 133
  • [39] A high-accuracy hybrid method for short-term wind power forecasting
    Khazaei, Sahra
    Ehsan, Mehdi
    Soleymani, Soodabeh
    Mohammadnezhad-Shourkaei, Hosein
    ENERGY, 2022, 238
  • [40] Short-term wind power forecasting using the hybrid model of multivariate variational mode decomposition (MVMD) and long short-term memory (LSTM) neural networks
    Ghanbari, Ehsan
    Avar, Ali
    ELECTRICAL ENGINEERING, 2025, 107 (03) : 2903 - 2933