Proof of some conjectures of Z.-W. Sun on congruences for Apery polynomials

被引:25
作者
Guo, Victor J. W. [1 ]
Zeng, Jiang [2 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[2] Univ Lyon 1, Inst Camille Jordan, CNRS, UMR 5208, F-69622 Villeurbanne, France
基金
美国国家科学基金会;
关键词
Apery polynomials; Pfaff-Saalschutz identity; Legendre symbol; Schmidt numbers; Schmidt polynomials;
D O I
10.1016/j.jnt.2012.02.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Apery polynomials are defined by A(n)(x) = Sigma(n)(k=0) (n k)(2) (n+k k)(2) x(k) for all nonnegative integers n. We confirm several conjectures of Z.-W. Sun on the congruences for the sum Sigma(n-1)(k=0)(-1)(k)(2k+1)A(k)(x) with x is an element of Z. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1731 / 1740
页数:10
相关论文
共 17 条
[1]   IDENTITIES IN COMBINATORICS .1. SORTING 2 ORDERED SETS [J].
ANDREWS, GE .
DISCRETE MATHEMATICS, 1975, 11 (02) :97-106
[2]  
[Anonymous], 1979, Asterisque
[3]  
[Anonymous], 1997, Enumerative combinatorics
[4]   ANOTHER CONGRUENCE FOR THE APERY NUMBERS [J].
BEUKERS, F .
JOURNAL OF NUMBER THEORY, 1987, 25 (02) :201-210
[5]   CONGRUENCE PROPERTIES OF APERY NUMBERS [J].
CHOWLA, S ;
COWLES, J ;
COWLES, M .
JOURNAL OF NUMBER THEORY, 1980, 12 (02) :188-190
[6]   SOME CONGRUENCES FOR APERY NUMBERS [J].
GESSEL, I .
JOURNAL OF NUMBER THEORY, 1982, 14 (03) :362-368
[7]  
Guo V.J.W., ARXIV10082894
[8]  
Mattarei S., ARXIV10121308
[9]   Supercongruences between truncated 2F1 hypergeometric functions and their Gaussian analogs [J].
Mortenson, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (03) :987-1007
[10]  
Rodriguez-Villegas F., 2003, FIELDS I COMMUNICATI, V38, P223