Multiscale analysis for ill-posed problems with semi-discrete Tikhonov regularization
被引:8
|
作者:
Zhong, Min
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Zhong, Min
[1
]
Lu, Shuai
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Lu, Shuai
[1
]
Cheng, Jin
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Shanghai Normal Univ, Sci Comp Key Lab Shanghai Univ, Shanghai Univ E Inst, Div Computat Sci, Shanghai, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Cheng, Jin
[1
,2
]
机构:
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Shanghai Normal Univ, Sci Comp Key Lab Shanghai Univ, Shanghai Univ E Inst, Div Computat Sci, Shanghai, Peoples R China
LINEAR INVERSE PROBLEMS;
DISCRETE-DATA;
STABILITY;
EQUATIONS;
D O I:
10.1088/0266-5611/28/6/065019
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Using compactly supported radial basis functions of varying radii, Wendland has shown how a multiscale analysis can be applied to the approximation of Sobolev functions on a bounded domain, when the available data are discrete and noisy. Here, we examine the application of this analysis to the solution of linear moderately ill-posed problems using semi-discrete Tikhonov-Phillips regularization. As in Wendland's work, the actual multiscale approximation is constructed by a sequence of residual corrections, where different support radii are employed to accommodate different scales. The convergence of the algorithm for noise-free data is given. Based on the Morozov discrepancy principle, a posteriori parameter choice rule and error estimates for the noisy data are derived. Two numerical examples are presented to illustrate the appropriateness of the proposed method.
机构:
Natl Univ Singapore, Dept Math, Singapore 117543, SingaporeFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Chu, Delin
Lin, Lijing
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Inst Math Sci, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Lin, Lijing
Tan, Roger C. E.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Singapore, Dept Math, Singapore 117543, SingaporeFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Tan, Roger C. E.
Wei, Yimin
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China