Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations

被引:60
作者
Tröltzsch, F [1 ]
Wachsmuth, D [1 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10632 Berlin, Germany
关键词
optimal control; Navier-Stokes equations; control constraints; second-order optimality conditions; first-order necessary conditions;
D O I
10.1051/cocv:2005029
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper sufficient optimality conditions are established for optimal control of both steady-state and instationary Navier-Stokes equations. The second-order condition requires coercivity of the Lagrange function on a suitable subspace together with first-order necessary conditions. It ensures local optimality of a reference function in a L-s-neighborhood, whereby the underlying analysis allows to use weaker norms than L-infinity.
引用
收藏
页码:93 / 119
页数:27
相关论文
共 28 条
[1]  
Abergel F., 1990, THEOR COMP FLUID DYN, V1, P303, DOI [DOI 10.1007/BF00271794, 10.1007/bf00271794]
[2]  
Adams R, 1978, Sobolev spaces
[3]   On an augmented Lagrangian SQP method for a class of optimal control problems in Banach spaces [J].
Arada, N ;
Raymond, JP ;
Tröltzsch, F .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 22 (03) :369-398
[4]   Optimal control problems with partially polyhedric constraints [J].
Bonnans, JF ;
Zidani, H .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (06) :1726-1741
[5]   Second-order analysis for control constrained optimal control problems of semilinear elliptic systems [J].
Bonnans, JF .
APPLIED MATHEMATICS AND OPTIMIZATION, 1998, 38 (03) :303-325
[6]  
Brezis H., 1983, ANAL FONCTIONELLE
[7]   Second order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations [J].
Casas, E ;
Tröltzsch, F ;
Unger, A .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (05) :1369-1391
[8]   Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints [J].
Casas, E ;
Mateos, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 40 (05) :1431-1454
[9]  
Casas E., 1996, Z ANAL ANWEND, V15, P687
[10]  
CASAS E, 1993, FRONTIERS APPL MATH