FUSION OF ALGORITHMS FOR MULTIPLE MEASUREMENT VECTORS

被引:0
作者
Deepa, K. G. [1 ]
Ambat, Sooraj K. [1 ,2 ]
Hari, K. V. S. [1 ]
机构
[1] Indian Inst Sci, Dept ECE, SSP Lab, Bangalore 560012, Karnataka, India
[2] Def R&D Org, Naval Phys & Oceanog Lab, Kochi 682021, Kerala, India
来源
2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS | 2016年
关键词
Compressed sensing; Fusion; Sparse signal reconstruction; multiple measurement vectors; SIMULTANEOUS SPARSE APPROXIMATION; MINIMUM NORM ALGORITHM; SIGNAL RECONSTRUCTION; PURSUIT; FOCUSS;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We consider the recovery of sparse signals that share a common support from multiple measurement vectors. The performance of several algorithms developed for this task depends on parameters like dimension of the sparse signal, dimension of measurement vector, sparsity level, measurement noise. We propose a fusion framework, where several multiple measurement vector reconstruction algorithms participate and the final signal estimate is obtained by combining the signal estimates of the participating algorithms. We present the conditions for achieving a better reconstruction performance than the participating algorithms. Numerical simulations demonstrate that our fusion algorithm often performs better than the participating algorithms.
引用
收藏
页码:4633 / 4637
页数:5
相关论文
共 21 条
[1]  
Ambat S. K., 2012, 20 EUR SIGN PROC C 2
[2]   Progressive fusion of reconstruction algorithms for low latency applications in compressed sensing [J].
Ambat, Sooraj K. ;
Chatterjee, Saikat ;
Hari, K. V. S. .
SIGNAL PROCESSING, 2014, 97 :146-151
[3]  
Ambat SK, 2013, INT CONF ACOUST SPEE, P5860, DOI 10.1109/ICASSP.2013.6638788
[4]   Fusion of Algorithms for Compressed Sensing [J].
Ambat, Sooraj K. ;
Chatterjee, Saikat ;
Hari, K. V. S. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (14) :3699-3704
[5]  
Ambat Sooraj K., 2014, IEEE T SIGN IN PRESS
[6]   An introduction to compressive sampling: A sensing/sampling paradigm that goes against the common knowledge in data acquisition [J].
Candes, Emmanuel J. ;
Wakin, Michael B. .
IEEE Signal Processing Magazine, 2008, 25 (02) :21-30
[7]   Stable signal recovery from incomplete and inaccurate measurements [J].
Candes, Emmanuel J. ;
Romberg, Justin K. ;
Tao, Terence .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) :1207-1223
[8]   Sparse solutions to linear inverse problems with multiple measurement vectors [J].
Cotter, SF ;
Rao, BD ;
Engan, K ;
Kreutz-Delgado, K .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (07) :2477-2488
[9]   Sparse channel estimation via matching pursuit with application to equalization [J].
Cotter, SF ;
Rao, BD .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2002, 50 (03) :374-377
[10]  
Deepa K. G., 2015, FUSION SPARSE RECONS