Limit theorems for the number of summands in integer partitions

被引:23
作者
Hwang, HK [1 ]
机构
[1] Acad Sinica, Inst Stat Sci, Taipei 115, Taiwan
关键词
integer partitions; central and local limit theorems; large deviations; Meinardus's scheme; Mellin transform; Lerch's zeta function; saddle-point method;
D O I
10.1006/jcta.2000.3170
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Central and local limit theorems are derived for the number of distinct summands in integer partitions, with or without repetitions, under a general scheme essentially due to Meinardus. The local limit theorems are of the form of Cramer-type large deviations and are proved by Mellin transform and the two-dimensional saddle-point method. Applications of these results include partitions into positive integers, into powers of integers, into integers [j(beta)], beta > 1, into aj + b, etc. (C) 2001 Academic Press.
引用
收藏
页码:89 / 126
页数:38
相关论文
共 40 条
[1]  
Andrews G. E., 1976, THEORY PARTITIONS
[2]  
[Anonymous], INTRO THEORIE ANAL P
[3]  
Auluck F. C., 1942, J INDIAN MATH SOC, V6, P105
[4]  
COMTET L, 1974, ADV COMBINATORIES AR
[5]   A note on the theory of moment generating functions [J].
Curtiss, JH .
ANNALS OF MATHEMATICAL STATISTICS, 1942, 13 :430-433
[6]  
DEBRUIJN NG, 1948, INDAG MATH, V10, P531
[7]  
Erdelyi A., 1953, Higher Transcendental Functions, California Institute of Technology. Bateman Manuscript Project, V1
[8]  
Erdos P., 1941, DUKE MATH J, V8, P335, DOI 10.1215/S0012-7094-41-00826-8
[9]  
Erdos P., 1981, TOPICS CLASSICAL NUM, V34, P397
[10]  
ERDOS P, 1971, ACTA ARITH, V18, P53