Dimensional Splitting Well-Balanced Schemes on Cartesian Mesh for 2D Shallow Water Equations with Variable Topography

被引:2
作者
Nguyen Xuan Thanh [1 ,4 ]
Mai Duc Thanh [2 ,4 ]
Dao Huy Cuong [3 ]
机构
[1] Univ Sci, Dept Math & Comp Sci, 227 Nguyen Van Cu Str,Dist 5, Ho Chi Minh City, Vietnam
[2] Int Univ, Dept Math, Linh Trung Ward, Quarter 6, Ho Chi Minh City, Vietnam
[3] Ho Chi Minh City Univ Educ, Dept Math, 280 An Duong Vuong Str,Dist 5, Ho Chi Minh City, Vietnam
[4] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
关键词
2D shallow water equations; Resonant; Nonconservative; Well-balanced scheme; Dimensional splitting; Accuracy; RIEMANN PROBLEM; GODUNOV METHOD; SOURCE TERMS; NOZZLE; FLOWS; MODEL; LAWS;
D O I
10.1007/s41980-021-00648-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present two types of simple algorithms for numerical approximations of the two-dimensional shallow water equations with variable topography by a dimensional splitting approach. The scheme of the first type has two steps and the the one of the second type has three steps of splitting dimensions in each iteration. In each step, the component computation incorporates a well-balanced method on Cartesian mesh in one-dimensional space. Tests show that these schemes provide us with a reasonable accuracy. Furthermore, we also establish the well-balanced property for both types of schemes.
引用
收藏
页码:2321 / 2348
页数:28
相关论文
共 34 条
[1]   A Godunov-type method for the seven-equation model of compressible two-phase flow [J].
Ambroso, A. ;
Chalons, C. ;
Raviart, P. -A. .
COMPUTERS & FLUIDS, 2012, 54 :67-91
[2]   RELAXATION AND NUMERICAL APPROXIMATION OF A TWO-FLUID TWO-PRESSURE DIPHASIC MODEL [J].
Ambroso, Annalisa ;
Chalons, Christophe ;
Coquel, Frederic ;
Galie, Thomas .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (06) :1063-1097
[3]   A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows [J].
Audusse, E ;
Bouchut, F ;
Bristeau, MO ;
Klein, R ;
Perthame, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06) :2050-2065
[4]   A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline [J].
Baudin, M ;
Coquel, F ;
Tran, QH .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (03) :914-936
[5]   A FULLY WELL-BALANCED, POSITIVE AND ENTROPY-SATISFYING GODUNOV-TYPE METHOD FOR THE SHALLOW-WATER EQUATIONS [J].
Berthon, Christophe ;
Chalons, Christophe .
MATHEMATICS OF COMPUTATION, 2016, 85 (299) :1281-1307
[6]   Finite volume schemes with equilibrium type discretization of source terms for scalar conservation laws [J].
Botchorishvili, R ;
Pironneau, O .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (02) :391-427
[7]  
Botchorishvili R, 2003, MATH COMPUT, V72, P131, DOI 10.1090/S0025-5718-01-01371-0
[8]   Well balancing of the SWE schemes for moving-water steady flows [J].
Caleffi, Valerio ;
Valiani, Alessandro .
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 342 :85-116
[9]   High order exactly well-balanced numerical methods for shallow water systems [J].
Castro Diaz, M. J. ;
Lopez-Garcia, J. A. ;
Pares, Carlos .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 246 :242-264
[10]   A New Approach for Designing Moving-Water Equilibria Preserving Schemes for the Shallow Water Equations [J].
Cheng, Yuanzhen ;
Chertock, Alina ;
Herty, Michael ;
Kurganov, Alexander ;
Wu, Tong .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (01) :538-554