Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants

被引:813
|
作者
Khan, M. Iqbal R. [1 ]
Fatma, Mehar [1 ]
Per, Tasir S. [1 ]
Anjum, Naser A. [2 ]
Khan, Nafees A. [1 ]
机构
[1] Aligarh Muslim Univ, Dept Bot, Aligarh, Uttar Pradesh, India
[2] Univ Aveiro, Ctr Environm & Marine Studies, Dept Chem, P-3810193 Aveiro, Portugal
来源
关键词
abiotic stress; crop-loss; phytohormones; salicylic acid; stress tolerance mechanisms; PHENYLALANINE AMMONIA-LYASE; ULTRAVIOLET-B RADIATION; MULTIPLE SIGNALING PATHWAYS; ANTIOXIDANT DEFENSE SYSTEM; INDUCED OXIDATIVE STRESS; INDUCED PROTEIN-KINASE; INDUCED CELL-DEATH; ARABIDOPSIS-THALIANA; SALINITY TOLERANCE; GENE-EXPRESSION;
D O I
10.3389/fpls.2015.00462
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; (c) cross-talks potential mechanisms potentially governing SA-induced plant abiotic stress-tolerance; and finally (d) briefly highlights major aspects so far unexplored in the current context.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Salicylic acid had the potential to enhance tolerance in horticultural crops against abiotic stress
    Chen, Shanshan
    Zhao, Chun-Bo
    Ren, Rui-Min
    Jiang, Jun-Hai
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [42] Current understanding of boosting power of salicylic acid for abiotic stress tolerance in horticultural crops
    Altaf, Muhammad Ahsan
    Shahid, Rabia
    Lal, Priyanka
    Ahmad, Riaz
    Zulfiqar, Faisal
    Kumar, Awadhesh
    Hayat, Faisal
    Kumar, Ravinder
    Lal, Milan Kumar
    Naz, Safina
    Tiwari, Rahul Kumar
    SOUTH AFRICAN JOURNAL OF BOTANY, 2023, 163 : 285 - 293
  • [43] Role of salicylic acid in plant abiotic stress
    Yuan, Shu
    Lin, Hong-Hui
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION C-A JOURNAL OF BIOSCIENCES, 2008, 63 (5-6): : 313 - 320
  • [44] Salicylic Acid and Abiotic Stress Responses in Rice
    Pal, M.
    Kovacs, V.
    Szalai, G.
    Soos, V.
    Ma, X.
    Liu, H.
    Mei, H.
    Janda, T.
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2014, 200 (01) : 1 - 11
  • [45] Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants
    Raza, Ali
    Charagh, Sidra
    Zahid, Zainab
    Mubarik, Muhammad Salman
    Javed, Rida
    Siddiqui, Manzer H.
    Hasanuzzaman, Mirza
    PLANT CELL REPORTS, 2021, 40 (08) : 1513 - 1541
  • [46] Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants
    Ali Raza
    Sidra Charagh
    Zainab Zahid
    Muhammad Salman Mubarik
    Rida Javed
    Manzer H. Siddiqui
    Mirza Hasanuzzaman
    Plant Cell Reports, 2021, 40 : 1513 - 1541
  • [47] Hydrogen sulfide is required for salicylic acid-induced chilling tolerance of cucumber seedlings
    Pan, Dong-Yun
    Fu, Xin
    Zhang, Xiao-Wei
    Liu, Feng-Jiao
    Bi, Huan-Gai
    Ai, Xi-Zhen
    PROTOPLASMA, 2020, 257 (06) : 1543 - 1557
  • [48] Metabolic analysis of salicylic acid-induced chilling tolerance of banana using NMR
    Chen, Lin
    Zhao, Xue
    Wu, Ji'en
    He, Yun
    Yang, Hongshun
    FOOD RESEARCH INTERNATIONAL, 2020, 128
  • [49] An Insight into Abiotic Stress and Influx Tolerance Mechanisms in Plants to Cope in Saline Environments
    Gul, Zarmina
    Tang, Zhong-Hua
    Arif, Muhammad
    Ye, Zhang
    BIOLOGY-BASEL, 2022, 11 (04):
  • [50] A Cascade of Recently Discovered Molecular Mechanisms Involved in Abiotic Stress Tolerance of Plants
    Saeed, Muhammad
    Dahab, Abdel Hafiz Adam
    Guo Wangzhen
    Zhang Tianzhen
    OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2012, 16 (04) : 188 - 199