Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants

被引:816
作者
Khan, M. Iqbal R. [1 ]
Fatma, Mehar [1 ]
Per, Tasir S. [1 ]
Anjum, Naser A. [2 ]
Khan, Nafees A. [1 ]
机构
[1] Aligarh Muslim Univ, Dept Bot, Aligarh, Uttar Pradesh, India
[2] Univ Aveiro, Ctr Environm & Marine Studies, Dept Chem, P-3810193 Aveiro, Portugal
来源
FRONTIERS IN PLANT SCIENCE | 2015年 / 6卷
关键词
abiotic stress; crop-loss; phytohormones; salicylic acid; stress tolerance mechanisms; PHENYLALANINE AMMONIA-LYASE; ULTRAVIOLET-B RADIATION; MULTIPLE SIGNALING PATHWAYS; ANTIOXIDANT DEFENSE SYSTEM; INDUCED OXIDATIVE STRESS; INDUCED PROTEIN-KINASE; INDUCED CELL-DEATH; ARABIDOPSIS-THALIANA; SALINITY TOLERANCE; GENE-EXPRESSION;
D O I
10.3389/fpls.2015.00462
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; (c) cross-talks potential mechanisms potentially governing SA-induced plant abiotic stress-tolerance; and finally (d) briefly highlights major aspects so far unexplored in the current context.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants
    Guozhang Kang
    Gezi Li
    Tiancai Guo
    Acta Physiologiae Plantarum, 2014, 36 : 2287 - 2297
  • [2] Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants
    Kang, Guozhang
    Li, Gezi
    Guo, Tiancai
    ACTA PHYSIOLOGIAE PLANTARUM, 2014, 36 (09) : 2287 - 2297
  • [3] 5-Aminolevulinic Acid-Induced Heavy Metal Stress Tolerance and Underlying Mechanisms in Plants
    Ali, Shafaqat
    Rizwan, Muhammad
    Zaid, Abbu
    Arif, Muhammad Saleem
    Yasmeen, Tahira
    Hussain, Afzal
    Shahid, Muhammad Rizwan
    Bukhari, Syed Asad Hussain
    Hussain, Saddam
    Abbasi, Ghulam Hassan
    JOURNAL OF PLANT GROWTH REGULATION, 2018, 37 (04) : 1423 - 1436
  • [4] 5-Aminolevulinic Acid-Induced Heavy Metal Stress Tolerance and Underlying Mechanisms in Plants
    Shafaqat Ali
    Muhammad Rizwan
    Abbu Zaid
    Muhammad Saleem Arif
    Tahira Yasmeen
    Afzal Hussain
    Muhammad Rizwan Shahid
    Syed Asad Hussain Bukhari
    Saddam Hussain
    Ghulam Hassan Abbasi
    Journal of Plant Growth Regulation, 2018, 37 : 1423 - 1436
  • [5] Jasmonates: Mechanisms and functions in abiotic stress tolerance of plants
    Farhangi-Abriz, Salar
    Ghassemi-Golezani, Kazem
    BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 2019, 20
  • [6] Salicylic acid and hydrogen peroxide in abiotic stress signaling in plants
    Scott, IM
    Dat, JF
    Lopez-Delgado, H
    Foyer, CH
    PHYTON-ANNALES REI BOTANICAE, 1999, 39 (03) : 13 - 17
  • [7] Induction of Abiotic Stress Tolerance by Salicylic Acid Signaling
    Eszter Horváth
    Gabriella Szalai
    Tibor Janda
    Journal of Plant Growth Regulation, 2007, 26 : 290 - 300
  • [8] Induction of abiotic stress tolerance by salicylic acid signaling
    Horvath, Eszter
    Szalai, Gabriella
    Janda, Tibor
    JOURNAL OF PLANT GROWTH REGULATION, 2007, 26 (03) : 290 - 300
  • [9] Abscisic Acid and Abiotic Stress Tolerance in Crop Plants
    Sah, Saroj K.
    Reddy, Kambham R.
    Li, Jiaxu
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [10] A comparison of Jasmonic acid and salicylic acid-induced salinity stress tolerance in safflower plants, particularly on sodium (Na) and potassium (K) nutrient contents
    Lotfi, Ramin
    Abbasi, Amin
    Pessarakli, Mohammad
    Rastogi, Anshu
    Kalaji, Hazem Mohamad
    Alizadeh, Khoshnood
    JOURNAL OF PLANT NUTRITION, 2024, 47 (04) : 515 - 528