Hyperspectral Anomaly Detection via Background Purification and Spatial Difference Enhancement

被引:0
作者
Wang, Xiaoyi [1 ]
Wang, Liguo [1 ,2 ]
Wang, Jiawen [3 ]
Sun, Kaipeng [3 ]
Wang, Qunming [4 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Peoples R China
[2] Dalian Minzu Univ, Coll Informat & Commun Engn, Dalian 116600, Peoples R China
[3] Shanghai Inst Satellite Engn, Shanghai 201109, Peoples R China
[4] Tongji Univ, Coll Surveying & Geoinformat, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Detectors; Hyperspectral imaging; Anomaly detection; Purification; Matched filters; Information filters; Dictionaries; background purification; collaborative representation; hyperspectral image (HSI); spatial difference enhancement; LOW-RANK; COLLABORATIVE REPRESENTATION; ALGORITHM; DICTIONARY;
D O I
10.1109/LGRS.2021.3140087
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral anomaly detection is one of the most important applications in the field of hyperspectral image (HSI) processing. However, hyperspectral anomaly detectors still face several challenges, including the limited use of spatial information and the unavoidable anomaly pollution problem. To cope with the above problems, we propose a hyperspectral anomaly detector, termed COPCRD, which enhances the prevailing collaborative-representation-based detector (CRD) using COPula-based Outlier Detection (COPOD) for background purification and guided filter for spatial difference enhancement. COPCRD mainly solves the anomaly pollution problem and further considers the spatial information of hyperspectral data to enhance discrimination of backgrounds and anomalies. Experimental results on four hyperspectral datasets reveal that the proposed method is more accurate than four state-of-the-art anomaly detectors.
引用
收藏
页数:5
相关论文
共 23 条
[1]   Total Variation and Sparsity Regularized Decomposition Model With Union Dictionary for Hyperspectral Anomaly Detection [J].
Cheng, Tongkai ;
Wang, Bin .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (02) :1472-1486
[2]   Graph and Total Variation Regularized Low-Rank Representation for Hyperspectral Anomaly Detection [J].
Cheng, Tongkai ;
Wang, Bin .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (01) :391-406
[3]  
Ferri C., 2011, P 28 INT C MACHINE L, P657
[4]   Hyperspectral Anomaly Detection via Deep Plug-and-Play Denoising CNN Regularization [J].
Fu, Xiyou ;
Jia, Sen ;
Zhuang, Lina ;
Xu, Meng ;
Zhou, Jun ;
Li, Qingquan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (11) :9553-9568
[5]   Weighted-RXD and Linear Filter-Based RXD: Improving Background Statistics Estimation for Anomaly Detection in Hyperspectral Imagery [J].
Guo, Qiandong ;
Zhang, Bing ;
Ran, Qiong ;
Gao, Lianru ;
Li, Jun ;
Plaza, Antonio .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2351-2366
[6]   Semisupervised Spectral Learning With Generative Adversarial Network for Hyperspectral Anomaly Detection [J].
Jiang, Kai ;
Xie, Weiying ;
Li, Yunsong ;
Lei, Jie ;
He, Gang ;
Du, Qian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07) :5224-5236
[7]   Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery [J].
Kwon, H ;
Nasrabadi, NM .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (02) :388-397
[8]   Transferred Deep Learning for Anomaly Detection in Hyperspectral Imagery [J].
Li, Wei ;
Wu, Guodong ;
Du, Qian .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (05) :597-601
[9]   Collaborative Representation for Hyperspectral Anomaly Detection [J].
Li, Wei ;
Du, Qian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (03) :1463-1474
[10]   COPOD: Copula-Based Outlier Detection [J].
Li, Zheng ;
Zhao, Yue ;
Botta, Nicola ;
Ionescu, Cezar ;
Hu, Xiyang .
20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, :1118-1123