Lovelock gravity at the crossroads of Palatini and metric formulations

被引:83
作者
Exirifard, Q. [1 ]
Sheikh-Jabbari, M. M. [1 ]
机构
[1] Inst Studies Theoret Phys & Math IPM, Tehran, Iran
关键词
D O I
10.1016/j.physletb.2008.02.012
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider extensions of the Einstein-Hilbert Lagrangian to a general functional of metric and Riemann curvature tensor, L(g(mu nu), R-mu alpha beta nu). A given such Lagrangian describes two different theories depending on considering connection and metric (Palatini formulation), or only the metric (metric formulation) as independent dynamical degrees of freedom. Equivalence of the Palatini and metric formulations at the level of equations of motion, which as we will argue is a manifestation of the casuality based on Einstein relativity, is a physical criterion that restricts form of Lagrangians of modified gravity theories. We prove that within the class of modified gravity theories we consider, only the Lovelock gravity satisfies this requirement. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:158 / 161
页数:4
相关论文
共 29 条
[1]   Cosmological constraints on f(R) gravity theories within the Palatini approach [J].
Amarzguioui, M. ;
Elgaroy, O. ;
Mota, D. F. ;
Multamaki, T. .
ASTRONOMY & ASTROPHYSICS, 2006, 454 (03) :707-714
[2]  
[Anonymous], TENSORS DIFFERENTIAL
[3]   Dynamics of linear perturbations in f(R) gravity [J].
Bean, Rachel ;
Bernat, David ;
Pogosian, Levon ;
Silvestri, Alessandra ;
Trodden, Mark .
PHYSICAL REVIEW D, 2007, 75 (06)
[4]  
BLAS D, HEPTH0701049
[5]   Cosmology of generalized modified gravity models - art. no. 065313 [J].
Carroll, SM ;
De Felice, A ;
Duvvuri, V ;
Easson, DA ;
Trodden, M ;
Turner, MS .
PHYSICAL REVIEW D, 2005, 71 (06) :1-11
[6]  
Einstein A, 1925, SITZBER PREUSS AKAD, P414
[7]   VARIATIONAL FORMULATION OF GENERAL-RELATIVITY FROM 1915 TO 1925 PALATINI METHOD DISCOVERED BY EINSTEIN IN 1925 [J].
FERRARIS, M ;
FRANCAVIGLIA, M ;
REINA, C .
GENERAL RELATIVITY AND GRAVITATION, 1982, 14 (03) :243-254
[8]   THE UNIVERSALITY OF VACUUM EINSTEIN EQUATIONS WITH COSMOLOGICAL CONSTANT [J].
FERRARIS, M ;
FRANCAVIGLIA, M ;
VOLOVICH, I .
CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (06) :1505-1517
[9]   METRIC-AFFINE GAUGE-THEORY OF GRAVITY - FIELD-EQUATIONS, NOETHER IDENTITIES, WORLD SPINORS, AND BREAKING OF DILATION INVARIANCE [J].
HEHL, FW ;
MCCREA, JD ;
MIELKE, EW ;
NEEMAN, Y .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 258 (1-2) :1-171
[10]   SOME PROPERTIES OF THE NOETHER CHARGE AND A PROPOSAL FOR DYNAMICAL BLACK-HOLE ENTROPY [J].
IYER, V ;
WALD, RM .
PHYSICAL REVIEW D, 1994, 50 (02) :846-864