Kinetic Mechanism of Protein N-terminal Methyltransferase 1

被引:34
|
作者
Richardson, Stacie L. [1 ,2 ]
Mao, Yunfei [1 ,2 ]
Zhang, Gang [1 ,2 ]
Hanjra, Pahul [1 ,2 ]
Peterson, Darrell L. [2 ,3 ]
Huang, Rong [1 ,2 ]
机构
[1] Virginia Commonwealth Univ, Dept Med Chem, Richmond, VA 23219 USA
[2] Virginia Commonwealth Univ, Inst Struct Biol & Drug Discovery, Richmond, VA 23219 USA
[3] Virginia Commonwealth Univ, Dept Biochem & Mol Biol, Richmond, VA 23219 USA
基金
美国国家卫生研究院;
关键词
METHYLATION; DNA; IDENTIFICATION; SPECIFICITY; CHROMATIN; PEPTIDES; BINDING; ASSAY; NRMT; RCC1;
D O I
10.1074/jbc.M114.626846
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The protein N-terminal methyltransferase 1 (NTMT1) catalyzes the transfer of the methyl group from the S-adenosyl-L-methionine to the protein alpha-amine, resulting in formation of S-adenosyl-L-homocysteine and alpha-N-methylated proteins. NTMT1 is an interesting potential anticancer target because it is overexpressed in gastrointestinal cancers and plays an important role in cell mitosis. To gain insight into the biochemical mechanism of NTMT1, we have characterized the kinetic mechanism of recombinant NTMT1 using a fluorescence assay and mass spectrometry. The results of initial velocity, product, and dead-end inhibition studies indicate that methylation by NTMT1 proceeds via a random sequential Bi Bi mechanism. In addition, our processivity studies demonstrate that NTMT1 proceeds via a distributive mechanism for multiple methylations. Together, our studies provide new knowledge about the kinetic mechanism of NTMT1 and lay the foundation for the development of mechanism-based inhibitors.
引用
收藏
页码:11601 / 11610
页数:10
相关论文
共 50 条
  • [21] N-terminal Protein Processing: A Comparative Proteogenomic Analysis
    Bonissone, Stefano
    Gupta, Nitin
    Romine, Margaret
    Bradshaw, Ralph A.
    Pevzner, Pavel A.
    MOLECULAR & CELLULAR PROTEOMICS, 2013, 12 (01) : 14 - 28
  • [22] Past, present, and perspectives of protein N-terminal methylation
    Diaz, Krystal
    Meng, Ying
    Huang, Rong
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2021, 63 : 115 - 122
  • [23] Protein N-terminal acetyltransferases in cancer
    Kalvik, T. V.
    Arnesen, T.
    ONCOGENE, 2013, 32 (03) : 269 - 276
  • [24] Spotlight on protein N-terminal acetylation
    Ree, Rasmus
    Varland, Sylvia
    Arnesen, Thomas
    EXPERIMENTAL AND MOLECULAR MEDICINE, 2018, 50 : 1 - 13
  • [25] Protein amino-terminal modifications and proteomic approaches for N-terminal profiling
    Lai, Zon W.
    Petrera, Agnese
    Schilling, Oliver
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2015, 24 : 71 - 79
  • [26] Substrate Specificity, Processivity, and Kinetic Mechanism of Protein Arginine Methyltransferase 5
    Wang, Min
    Xu, Rui-Ming
    Thompson, Paul R.
    BIOCHEMISTRY, 2013, 52 (32) : 5430 - 5440
  • [27] Developmental roles of protein N-terminal acetylation
    Silva, Rui D.
    Martinho, Rui G.
    PROTEOMICS, 2015, 15 (14) : 2402 - 2409
  • [28] A crucial role of N-terminal domain of influenza A virus M1 protein in interaction with swine importin α1 protein
    Liu, Qinfang
    Bawa, Bhupinder
    Ma, Jingjiao
    Li, Feng
    Ma, Wenjun
    Richt, Jurgen A.
    VIRUS GENES, 2014, 49 (01) : 157 - 162
  • [29] N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases
    Van Damme, Petra
    Hole, Kristine
    Gevaert, Kris
    Arnesen, Thomas
    PROTEOMICS, 2015, 15 (14) : 2436 - 2446
  • [30] Acetylation of N-terminal valine of glycine N-methyltransferase affects enzyme inhibition by folate
    Luka, Zigmund
    Loukachevitch, Lioudmila V.
    Wagner, Conrad
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2008, 1784 (09): : 1342 - 1346