Research on Semi-Physical Simulation Testing of Inter-Satellite Laser Interference in the China Taiji Space Gravitational Wave Detection Program

被引:10
作者
Wang, Yikun [1 ,2 ,3 ]
Meng, Lingqiang [1 ,2 ]
Xu, Xuesen [1 ]
Niu, Yu [4 ]
Qi, Keqi [4 ]
Bian, Wei [2 ]
Yang, Qiujie [3 ]
Liu, Heshan [4 ]
Jia, Jianjun [1 ,2 ,3 ]
Wang, Jianyu [1 ,2 ,3 ]
机构
[1] UCAS, Hangzhou Inst Adv Study, Sch Phys & Optoelect Engn, Hangzhou 310024, Peoples R China
[2] UCAS, Key Lab Gravitat Wave Precis Measurement Zhejiang, Hangzhou Inst Adv Study, Hangzhou 310024, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Tech Phys, Key Lab Space Act Optoelect Technol, Shanghai 200083, Peoples R China
[4] Chinese Acad Sci, Inst Mech, Beijing 100190, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 17期
基金
中国国家自然科学基金;
关键词
space gravitational wave detection; semi-physical simulation test; inter-satellite laser interference; 12-AXIS VIBRATION ISOLATION; INTERFEROMETER; LIGO; ANTENNA; DESIGN;
D O I
10.3390/app11177872
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To guarantee a smooth in-orbit space gravitational wave detection for the Taiji mission, a semi-physical simulation test of inter-satellite laser interference is carried out. The semi-physical simulation test consists of three aspects: the establishment of the inter-satellite laser link, interferometry of the inter-satellite ranging, and simulation of the space environment. With the designed specifications for the semi-physical simulation platform, the test results for the inter-satellite laser interference can be obtained. Based on the semi-physical simulation test, the risks of inter-satellite laser interference technology can be mitigated, laying a solid foundation for the successful detection of in-orbit gravitational waves.
引用
收藏
页数:15
相关论文
共 54 条
  • [1] Observation of Gravitational Waves from a Binary Black Hole Merger
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abernathy, M. R.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, B.
    Allocca, A.
    Altin, P. A.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Arain, M. A.
    Araya, M. C.
    Arceneaux, C. C.
    Areeda, J. S.
    Arnaud, N.
    Arun, K. G.
    Ascenzi, S.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Bacon, P.
    Bader, M. K. M.
    Baker, P. T.
    Baldaccini, F.
    Ballardin, G.
    Ballmer, S. W.
    Barayoga, J. C.
    Barclay, S. E.
    Barish, B. C.
    Barker, D.
    Barone, F.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (06)
  • [2] Abbott B.P, 2014, PROG ASTRON, V32, P351
  • [3] LIGO - THE LASER-INTERFEROMETER-GRAVITATIONAL-WAVE-OBSERVATORY
    ABRAMOVICI, A
    ALTHOUSE, WE
    DREVER, RWP
    GURSEL, Y
    KAWAMURA, S
    RAAB, FJ
    SHOEMAKER, D
    SIEVERS, L
    SPERO, RE
    THORNE, KS
    VOGT, RE
    WEISS, R
    WHITCOMB, SE
    ZUCKER, ME
    [J]. SCIENCE, 1992, 256 (5055) : 325 - 333
  • [4] Advanced Virgo: a second-generation interferometric gravitational wave detector
    Acernese, F.
    Agathos, M.
    Agatsuma, K.
    Aisa, D.
    Allemandou, N.
    Allocca, A.
    Amarni, J.
    Astone, P.
    Balestri, G.
    Ballardin, G.
    Barone, F.
    Baronick, J-P
    Barsuglia, M.
    Basti, A.
    Basti, F.
    Bauer, Th S.
    Bavigadda, V.
    Bejger, M.
    Beker, M. G.
    Belczynski, C.
    Bersanetti, D.
    Bertolini, A.
    Bitossi, M.
    Bizouard, M. A.
    Bloemen, S.
    Blom, M.
    Boer, M.
    Bogaert, G.
    Bondi, D.
    Bondu, F.
    Bonelli, L.
    Bonnand, R.
    Boschi, V.
    Bosi, L.
    Bouedo, T.
    Bradaschia, C.
    Branchesi, M.
    Briant, T.
    Brillet, A.
    Brisson, V.
    Bulik, T.
    Bulten, H. J.
    Buskulic, D.
    Buy, C.
    Cagnoli, G.
    Calloni, E.
    Campeggi, C.
    Canuel, B.
    Carbognani, F.
    Cavalier, F.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (02)
  • [5] Akutsu T., 2019, ARXIV, DOI [10.1038/s41550-018-0658-y, DOI 10.1038/S41550-018-0658-Y]
  • [6] Interferometer design of the KAGRA gravitational wave detector
    Aso, Yoichi
    Michimura, Yuta
    Somiya, Kentaro
    Ando, Masaki
    Miyakawa, Osamu
    Sekiguchi, Takanori
    Tatsumi, Daisuke
    Yamamoto, Hiroaki
    [J]. PHYSICAL REVIEW D, 2013, 88 (04):
  • [7] Bender P., LASER INTERFEROMETER
  • [8] THE VIRGO PROJECT - A WIDE BAND ANTENNA FOR GRAVITATIONAL-WAVE DETECTION
    BRADASCHIA, C
    DELFABBRO, R
    DIVIRGILIO, A
    GIAZOTTO, A
    KAUTZKY, H
    MONTELATICI, V
    PASSUELLO, D
    BRILLET, A
    CREGUT, O
    HELLO, P
    MAN, CN
    MANH, PT
    MARRAUD, A
    SHOEMAKER, D
    VINET, JY
    BARONE, F
    DIFIORE, L
    MILANO, L
    RUSSO, G
    AGUIRREGABIRIA, JM
    BEL, H
    DURUISSEAU, JP
    LEDENMAT, G
    TOURRENC, P
    CAPOZZI, M
    LONGO, M
    LOPS, M
    PINTO, I
    ROTOLI, G
    DAMOUR, T
    BONAZZOLA, S
    MARCK, JA
    GOURGHOULON, Y
    HOLLOWAY, LE
    FULIGNI, F
    IAFOLLA, V
    NATALE, G
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1990, 289 (03) : 518 - 525
  • [9] Chwalla M., 2016, Classical and Quantum Gravity, V33, DOI 10.1088/0264-9381/33/24/245015
  • [10] Cirillo F., 2007, THESIS U PISA PISA I