On Z/3-Godeaux Surfaces

被引:4
|
作者
Coughlan, Stephen [1 ,3 ]
Urzua, Giancarlo [2 ]
机构
[1] Leibniz Univ Hannover, Inst Algebra Geometrie, Welfengarten 1, D-30167 Hannover, Germany
[2] Pontificia Univ Catolica Chile, Fac Matemat, Campus San Joaquin,Ave Vicuna Mackenna 4860, Santiago, Chile
[3] Math Inst, Lehrstuhl Math 8, Univ Str 30, D-95447 Bayreuth, Germany
关键词
GENERAL TYPE;
D O I
10.1093/imrn/rnx049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that Godeaux-Reid surfaces with torsion group Z/3 have topological fundamental group Z/3. For this purpose, we describe degenerations to stable KSBA surfaces with one 1/4 (1, 1) singularity, whose minimal resolution are elliptic fibrations with two multiplicity three fibres and one I-4 singular fibre. We study special such degenerations which have an involution, describing the corresponding Campedelli double plane construction. We also find some stable rational degenerations, some of which have more singularities, and one of which has a single 1/9 (1, 2) singularity, the minimal possible index for such a surface. Finally, we do the analogous study for the Godeaux surfaces with torsion Z/4.
引用
收藏
页码:5609 / 5637
页数:29
相关论文
共 22 条
  • [1] On degenerations of Z/2-Godeaux surfaces
    Dias, Eduardo
    Rito, Carlos
    Urzua, Giancarlo
    REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (05) : 1399 - 1423
  • [2] EXTENDING HYPERELLIPTIC K3 SURFACES, AND GODEAUX SURFACES WITH π1 = Z/2
    Coughlan, Stephen
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (04) : 869 - 893
  • [3] Gorenstein stable Godeaux surfaces
    Franciosi, Marco
    Pardini, Rita
    Rollenske, Sonke
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (04): : 3349 - 3379
  • [4] Godeaux and Campedelli Surfaces via Deformations
    Wali, Haseeb
    Iqbal, Sohail
    MATHEMATICS, 2024, 12 (19)
  • [5] Godeaux Surfaces with an Enriques Involution and Some Stable Degenerations
    Lopes, Margarida Mendes
    Pardini, Rita
    FROM CLASSICAL TO MODERN ALGEBRAIC GEOMETRY: CORRADO SEGRE'S MASTERSHIP AND LEGACY, 2016, : 451 - 473
  • [6] Numerical Godeaux surfaces with an involution in positive characteristic
    Kim, Soonyoung
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2014, 90 (08) : 113 - 118
  • [7] Smoothing semi-smooth stable Godeaux surfaces
    Fantechi, Barbara
    Franciosi, Marco
    Pardini, Rita
    ALGEBRAIC GEOMETRY, 2022, 9 (04): : 502 - 512
  • [8] Surfaces with pg=q=3
    Gian Pietro Pirola
    manuscripta mathematica, 2002, 108 : 163 - 170
  • [9] Surfaces with pg=q=3
    Pirola, GP
    MANUSCRIPTA MATHEMATICA, 2002, 108 (02) : 163 - 170
  • [10] On surfaces with pg=2q-3
    Lopes, Margarida Mendes
    Pardini, Rita
    ADVANCES IN GEOMETRY, 2010, 10 (03) : 549 - 555