We prove that Godeaux-Reid surfaces with torsion group Z/3 have topological fundamental group Z/3. For this purpose, we describe degenerations to stable KSBA surfaces with one 1/4 (1, 1) singularity, whose minimal resolution are elliptic fibrations with two multiplicity three fibres and one I-4 singular fibre. We study special such degenerations which have an involution, describing the corresponding Campedelli double plane construction. We also find some stable rational degenerations, some of which have more singularities, and one of which has a single 1/9 (1, 2) singularity, the minimal possible index for such a surface. Finally, we do the analogous study for the Godeaux surfaces with torsion Z/4.
机构:
Univ Porto, Dept Matemat, Fac Ciencias, Rua Campo Alegre 687, P-4169007 Porto, PortugalUniv Porto, Dept Matemat, Fac Ciencias, Rua Campo Alegre 687, P-4169007 Porto, Portugal
Dias, Eduardo
Rito, Carlos
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tras Os Montes & Alto Douro, UTAD, P-5000801 Vila Real, PortugalUniv Porto, Dept Matemat, Fac Ciencias, Rua Campo Alegre 687, P-4169007 Porto, Portugal
Rito, Carlos
Urzua, Giancarlo
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Chile, Fac Matemat, Campus San Joaquin,Ave Vicuna Mackenna 4860, Santiago, ChileUniv Porto, Dept Matemat, Fac Ciencias, Rua Campo Alegre 687, P-4169007 Porto, Portugal
机构:
Univ Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56127 Pisa, ItalyUniv Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56127 Pisa, Italy
Franciosi, Marco
Pardini, Rita
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56127 Pisa, ItalyUniv Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56127 Pisa, Italy
Pardini, Rita
Rollenske, Sonke
论文数: 0引用数: 0
h-index: 0
机构:
Philipps Univ Marburg, FB Math & Informat 12, Hans Meerwein Str 6, D-35032 Marburg, GermanyUniv Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56127 Pisa, Italy