Memory-type boundary control of a laminated Timoshenko beam

被引:28
作者
Feng, Baowei [1 ]
Soufyane, Abdelaziz [2 ]
机构
[1] Southwestern Univ Finance & Econ, Dept Econ Math, Chengdu, Peoples R China
[2] Univ Sharjah, Coll Sci, Dept Math, POB 27272, Sharjah, U Arab Emirates
基金
中国国家自然科学基金;
关键词
Laminated beam; Timoshenko; viscoelastic damping; general decay; convexity; EXPONENTIAL STABILIZATION; GENERAL DECAY; STABILITY;
D O I
10.1177/1081286520911078
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we consider a laminated Timoshenko beam with boundary conditions of a memory type. This structure is given by two identical uniform layers, one on top of the other, taking into account that an adhesive of small thickness bonds the two surfaces and produces an interfacial slip. Under the assumptions of wider classes of kernel functions, we establish an optimal explicit energy decay result. The stability result is more general than previous works and hence improves earlier results in the literature.
引用
收藏
页码:1568 / 1588
页数:21
相关论文
共 34 条
[1]   A general method for proving sharp energy decay rates for memory-dissipative evolution equations [J].
Alabau-Boussouira, Fatiha ;
Cannarsa, Piermarco .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (15-16) :867-872
[2]  
[Anonymous], 2002, ABSTR APPL ANAL
[3]  
[Anonymous], 2016, Poincare J. Anal. Appl, DOI DOI 10.46753/PJAA.2016.V03I02.001
[4]   Uniform stability of a laminated beam with structural damping and second sound [J].
Apalara, Tijani A. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (02)
[5]  
Arnold V. I., 1989, Graduate Texts in Mathematics
[6]   Artificial boundary condition for a modified fractional diffusion problem [J].
Awotunde, Abeeb A. ;
Ghanam, Ryad A. ;
Tatar, Nasser-eddine .
BOUNDARY VALUE PROBLEMS, 2015, :1-17
[7]   Optimal polynomial decay of functions and operator semigroups [J].
Borichev, Alexander ;
Tomilov, Yuri .
MATHEMATISCHE ANNALEN, 2010, 347 (02) :455-478
[8]   Easy test for stability of laminated beams with structural damping and boundary feedback controls [J].
Cao, Xue-Guang ;
Liu, Dong-Yi ;
Xu, Gen-Qi .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2007, 13 (03) :313-336
[9]   Existence and general decay of a transmission problem for the plate equation with a memory condition on the boundary [J].
Chen, Kewang ;
Liu, Wenjun ;
Yu, Jun .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (01)
[10]   General Decay Rates for a Laminated Beam with Memory [J].
Chen, Zhijing ;
Liu, Wenjun ;
Chen, Dongqin .
TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (05) :1227-1252