Realizing efficient C-N coupling via electrochemical co-reduction of CO2 and NO3- on AuPd nanoalloy to form urea: Key C-N coupling intermediates

被引:110
作者
Wang, Hua [1 ]
Jiang, Yong [1 ]
Li, Sijun [1 ]
Gou, Fenglin [1 ]
Liu, Xiaorui [1 ]
Jiang, Yimin [1 ]
Luo, Wei [1 ]
Shen, Wei [1 ]
He, Rongxing [1 ]
Li, Ming [1 ]
机构
[1] Southwest Univ, Key Lab Luminescence Anal & Mol Sensing, Coll Chem & Chem Engn, Chongqing 400715, Peoples R China
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2022年 / 318卷
基金
中国国家自然科学基金;
关键词
Electrochemical co-reduction; CO2 andNO(3)(-); C-N coupling; Key coupling intermediates; AuPd nanoalloys; GAS-DIFFUSION ELECTRODES; CARBON-DIOXIDE; NITRITE IONS; ELECTROCATALYTIC REDUCTION; NITRATE IONS; NITROGEN; CONVERSION;
D O I
10.1016/j.apcatb.2022.121819
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical C-N coupling of carbon dioxide and oxynitride under ambient environment is an emerging approach which promisingly enables sustainable production of valuable industrial chemicals, such as amines and their derivatives. However, the understanding of the C-N coupling is still in its infancy. Herein, we reported highly efficient electrochemical co-reduction of carbon dioxide and nitrate to form urea catalyzed by AuPd nanoalloy. Faradic efficiency and urea formation rate achieved 15.6% and 204.2 mu g.mg(-1).h(- 1), respectively, in a gas-tight H-type cell under ambient environment. The DFT studies on the C-N coupling mechanism showed that hydroxylamine was the most likely C-N coupling N-intermediate among many nitrogen-containing intermediates and that *NH2OH and *CO, rather than *NH2 and *CO, were confirmed to realize the C-N coupling to form urea through a one-step synergistic coupling which is a thermodynamically spontaneous process with a low activation barrier. This work not only provides new insights into the C-N coupling of oxynitride and carbon dioxide under ambient environment, but also may pave a way for promoting sustainable production of C-N coupling products.
引用
收藏
页数:9
相关论文
共 44 条
[1]   From greenhouse gas to feedstock: formation of ammonium carbamate from CO2 and NH3 in organic solvents and its catalytic conversion into urea under mild conditions [J].
Barzagli, Francesco ;
Mani, Fabrizio ;
Peruzzini, Maurizio .
GREEN CHEMISTRY, 2011, 13 (05) :1267-1274
[2]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea [J].
Cao, Na ;
Quan, Yueli ;
Guan, Anxiang ;
Yang, Chao ;
Ji, Yali ;
Zhang, Lijuan ;
Zheng, Gengfeng .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 577 :109-114
[5]  
Chen C, 2021, ELECTRO C N COUPLING, V1
[6]   Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions [J].
Chen, Chen ;
Zhu, Xiaorong ;
Wen, Xiaojian ;
Zhou, Yangyang ;
Zhou, Ling ;
Li, Hao ;
Tao, Li ;
Li, Qiling ;
Du, Shiqian ;
Liu, Tingting ;
Yan, Dafeng ;
Xie, Chao ;
Zou, Yuqin ;
Wang, Yanyong ;
Chen, Ru ;
Huo, Jia ;
Li, Yafei ;
Cheng, Jun ;
Su, Hui ;
Zhao, Xu ;
Cheng, Weiren ;
Liu, Qinghua ;
Lin, Hongzhen ;
Luo, Jun ;
Chen, Jun ;
Dong, Mingdong ;
Cheng, Kai ;
Li, Conggang ;
Wang, Shuangyin .
NATURE CHEMISTRY, 2020, 12 (08) :717-724
[7]   Te-Doped Pd Nanocrystal for Electrochemical Urea Production by Efficiently Coupling Carbon Dioxide Reduction with Nitrite Reduction [J].
Feng, Yonggang ;
Yang, Hao ;
Zhang, Ying ;
Huang, Xiaoqing ;
Li, Leigang ;
Cheng, Tao ;
Shao, Qi .
NANO LETTERS, 2020, 20 (11) :8282-8289
[8]   Dual-Sites Tandem Catalysts for C-N Bond Formation via Electrocatalytic Coupling of CO2 and Nitrogenous Small Molecules [J].
Fu, Jiaju ;
Yang, Yan ;
Hu, Jin-Song .
ACS MATERIALS LETTERS, 2021, 3 (10) :1468-1476
[9]   Size-Dependent Electrocatalytic Reduction of CO2 over Pd Nanoparticles [J].
Gao, Dunfeng ;
Zhou, Hu ;
Wang, Jing ;
Miao, Shu ;
Yang, Fan ;
Wang, Guoxiong ;
Wang, Jianguo ;
Bao, Xinhe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (13) :4288-4291
[10]   Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications [J].
Garcia-Segura, Sergi ;
Lanzarini-Lopes, Mariana ;
Hristovski, Kiril ;
Westerhoff, Paul .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 236 :546-568