Stability of a stochastic SIR system

被引:231
作者
Tornatore, E [1 ]
Buccellato, SM [1 ]
Vetro, P [1 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Applicaz, I-90123 Palermo, Italy
关键词
SIR model; delay SIR model; Lyapunov function; stochastic process; numerical simulation; stochastic stability;
D O I
10.1016/j.physa.2005.02.057
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a stochastic SIR model with or without distributed time delay and we study the stability of disease-free equilibrium. The numerical simulation of the stochastic SIR model shows that the introduction of noise modifies the threshold of system for an epidemic to occur and the threshold stochastic value is found. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:111 / 126
页数:16
相关论文
共 12 条
[1]   POPULATION BIOLOGY OF INFECTIOUS-DISEASES .1. [J].
ANDERSON, RM ;
MAY, RM .
NATURE, 1979, 280 (5721) :361-367
[2]   POPULATION-DYNAMICS OF FOX RABIES IN EUROPE [J].
ANDERSON, RM ;
JACKSON, HC ;
MAY, RM ;
SMITH, AM .
NATURE, 1981, 289 (5800) :765-771
[3]   Global asymptotic stability of an SIR epidemic model with distributed time delay [J].
Beretta, E ;
Hara, T ;
Ma, WB ;
Takeuchi, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (06) :4107-4115
[4]  
BERETTA E, 1995, J MATH BIOL, V33, P250, DOI 10.1007/BF00169563
[5]  
COOKE K. L., 1979, Rocky Mountain Journal of Mathematics, V9, P31, DOI DOI 10.1216/RMJ-1979-9-1-31
[6]  
Hasminskij R. Z., 1980, STOCHASTIC STABILITY
[7]  
HETHCOTE H W, 1976, Mathematical Biosciences, V28, P335, DOI 10.1016/0025-5564(76)90132-2
[8]  
IANNELLI M, APPL MATH MONOGRAPHS
[9]  
Kolmanovskii V., 1992, APPL THEORY FUNCTION
[10]  
Kolmanovskii V. B., 1986, MATH SCI ENG, V180