Orchestrated Yolk-Shell Nanohybrids Regulate Macrophage Polarization and Dendritic Cell Maturation for Oncotherapy with Augmented Antitumor Immunity

被引:92
作者
Zhao, Xiaoyi [1 ]
Guo, Kangli [1 ]
Zhang, Kai [1 ]
Duan, Shun [1 ]
Chen, Meiwan [2 ]
Zhao, Nana [1 ]
Xu, Fu-Jian [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Mat Sci & Engn, State Key Lab Chem Resource Engn, Key Lab Biomed Mat Nat Macromol,Beijing Lab Biome, Beijing 100029, Peoples R China
[2] Univ Macau, Inst Chinese Med Sci, State Key Lab Qual Res Chinese Med, Macau 999078, Peoples R China
基金
中国国家自然科学基金;
关键词
antitumor immunity; chemodynamic therapy; immunomodulatory effect; tumor microenvironment; yolk-shell structure; TUMOR-ASSOCIATED MACROPHAGES; CANCER-IMMUNOTHERAPY; NANOPARTICLES; OXIDE; CHEMOTHERAPY;
D O I
10.1002/adma.202108263
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The protumoral and immunosuppressive tumor microenvironments greatly limit the antitumor immune responses of nanoparticles for cancer immunotherapy. Here, the intrinsic immunomodulatory effects of orchestrated nanoparticles and their ability to simultaneously trigger tumor antigen release, thereby reversing immunosuppression and achieving potent antitumor immunity and augmented cancer therapy, are explored. By optimizing both the composition and morphology, a facile strategy is proposed to construct yolk-shell nanohybrids (Fe3O4@C/MnO2-PGEA, FCMP). The intrinsic immunomodulatory effects of FCMP are utilized to reprogram macrophages to M1 phenotype and induce the maturation of dendritic cells. In addition, the chemical, magnetic, and optical properties of FCMP contribute to amplified immunogenic cell death induced by multiaugmented chemodynamic therapy (CDT) and synergistic tumor treatment. Taking advantage of the unique yolk-shell structure, accurate T-1-T-2 dual-mode magnetic resonance imaging can be realized and CDT can be maximized through sufficient exposure of both the Fe3O4 core and MnO2 shell. Potent antitumor effects are found to substantially inhibit the growth of both primary and distant tumors. Furthermore, the strategy can be extended to the synthesis of other yolk-shell nanohybrids with tailored properties. This work establishes a novel strategy for the fabrication of multifunctional nanoplatforms with yolk-shell structure for effective cancer therapy with immunomodulation-enhanced antitumor immunity.
引用
收藏
页数:14
相关论文
共 59 条
[1]   Asymmetric Silica Nanoparticles with Tunable Head-Tail Structures Enhance Hemocompatibility and Maturation of Immune Cells [J].
Abbaraju, Prasanna Lakshmi ;
Meka, Anand Kumar ;
Song, Hao ;
Yang, Yannan ;
Jambhrunkar, Manasi ;
Zhang, Jun ;
Xu, Chun ;
Yu, Meihua ;
Yu, Chengzhong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (18) :6321-6328
[2]  
[Anonymous], 2023, CA Cancer J Clin, DOI DOI 10.3322/caac.21772
[3]   Understanding the tumor immune microenvironment (TIME) for effective therapy [J].
Binnewies, Mikhail ;
Roberts, Edward W. ;
Kersten, Kelly ;
Chan, Vincent ;
Fearon, Douglas F. ;
Merad, Miriam ;
Coussens, Lisa M. ;
Gabrilovich, Dmitry I. ;
Ostrand-Rosenberg, Suzanne ;
Hedrick, Catherine C. ;
Vonderheide, Robert H. ;
Pittet, Mikael J. ;
Jain, Rakesh K. ;
Zou, Weiping ;
Howcroft, T. Kevin ;
Woodhouse, Elisa C. ;
Weinberg, Robert A. ;
Krummel, Matthew F. .
NATURE MEDICINE, 2018, 24 (05) :541-550
[4]   Colorectal Tumor Microenvironment-Activated Bio-Decomposable and Metabolizable Cu2O@CaCO3Nanocomposites for Synergistic Oncotherapy [J].
Chang, Mengyu ;
Hou, Zhiyao ;
Jin, Dayong ;
Zhou, Jiajia ;
Wang, Man ;
Wang, Meifang ;
Shu, Mengmeng ;
Ding, Binbin ;
Li, Chunxia ;
Lin, Jun .
ADVANCED MATERIALS, 2020, 32 (43)
[5]   Tumor-Targeted Drug and CpG Delivery System for Phototherapy and Docetaxel-Enhanced Immunotherapy with Polarization toward M1-Type Macrophages on Triple Negative Breast Cancers [J].
Chen, Lv ;
Zhou, Lulu ;
Wang, Chunhui ;
Han, Yi ;
Lu, Yonglin ;
Liu, Jie ;
Hu, Xiaochun ;
Yao, Tianming ;
Lin, Yun ;
Liang, Shujing ;
Shi, Shuo ;
Dong, Chunyan .
ADVANCED MATERIALS, 2019, 31 (52)
[6]   In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment [J].
Chen, Qian ;
Wang, Chao ;
Zhang, Xudong ;
Chen, Guojun ;
Hu, Quanyin ;
Li, Hongjun ;
Wang, Jinqiang ;
Wen, Di ;
Zhang, Yuqi ;
Lu, Yifei ;
Yang, Guang ;
Jiang, Chen ;
Wang, Jun ;
Dotti, Gianpietro ;
Gu, Zhen .
NATURE NANOTECHNOLOGY, 2019, 14 (01) :89-+
[7]   Rattle-Structured Rough Nanocapsules with in-Situ-Formed reil Gold Nanorod Cores for Complementary Gene/Chemo/Photothermal Therapy [J].
Chen, Xinyan ;
Zhang, Qing ;
Li, Jinliang ;
Yang, Ming ;
Zhao, Nana ;
Xu, Fu-Jian .
ACS NANO, 2018, 12 (06) :5646-5656
[8]   Hybrid Nanotrimers for Dual T1 and T2-Weighted Magnetic Resonance Imaging [J].
Cheng, Kai ;
Yang, Meng ;
Zhang, Ruiping ;
Qin, Chunxia ;
Su, Xinhui ;
Cheng, Zhen .
ACS NANO, 2014, 8 (10) :9884-9896
[9]   Controlled Synthesis and Surface Engineering of Janus Chitosan-Gold Nanoparticles for Photoacoustic Imaging-Guided Synergistic Gene/Photothermal Therapy [J].
Dai, Xiaoguang ;
Zhao, Xiaoyi ;
Liu, Yanjun ;
Chen, Beibei ;
Ding, Xiaokang ;
Zhao, Nana ;
Xu, Fu-Jian .
SMALL, 2021, 17 (11)
[10]   Nanoparticles from Cuttlefish Ink Inhibit Tumor Growth by Synergizing Immunotherapy and Photothermal Therapy [J].
Deng, Rong-Hui ;
Zou, Mei-Zhen ;
Zheng, Diwei ;
Peng, Si-Yuan ;
Liu, Wenlong ;
Bai, Xue-Feng ;
Chen, Han-Shi ;
Sun, Yunxia ;
Zhou, Pang-Hu ;
Zhang, Xian-Zheng .
ACS NANO, 2019, 13 (08) :8618-8629