Positive bilinear operators in Calderon-Lozanovskii spaces

被引:6
作者
Maligranda, L [1 ]
机构
[1] Lulea Univ Technol, Dept Math, SE-97187 Lulea, Sweden
关键词
D O I
10.1007/s00013-003-0512-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A generalization of an abstract Holder-Rogers inequality for positive bilinear operators is proved. Then it is used in the theory of interpolation of operators. An interpolation theorem for positive bilinear operators between Calderon-Lozanovskii spaces holds if and only if the parameter functions generating those spaces satisfy a generalized C-supermultiplicativity condition (2). In the case when all generating functions are the same this condition is exactly the same as the C-supermultiplicativity condition on the function.
引用
收藏
页码:26 / 37
页数:12
相关论文
共 21 条
[1]  
Aliprantis C. D., 1985, POSITIVE OPERATORS
[2]   Interpolation of positive polylinear operators in Calderon-Lozanovskii spaces [J].
Astashkin, SV .
SIBERIAN MATHEMATICAL JOURNAL, 1997, 38 (06) :1047-1053
[3]  
ASTASHKIN SV, 1995, C FUNCT SPAC APPR TH
[4]  
Berezhnoi E.I, 1981, QUALITATIVE APPROXIM, V160, P3
[5]  
Bergh J., 1979, INTERPOLATION SPACES
[6]  
BRUNDYI YA, 1991, INTERPOLATION FUNC 1
[7]  
Calderon A.-P., 1964, Studia Math., V24, P113, DOI DOI 10.4064/SM-24-2-113-190
[8]  
Krein, 1982, INTERPOLATION LINEAR
[9]  
Krengel U., 1985, ERGODIC THEOREMS
[10]  
KRUGLYAK NY, 1993, STUD MATH, V104, P161