Gegenbauer-solvable quantum chain model

被引:43
作者
Znojil, Miloslav [1 ]
机构
[1] Nucl Phys Inst ASCR, Rez 25068, Czech Republic
来源
PHYSICAL REVIEW A | 2010年 / 82卷 / 05期
关键词
PSEUDO-HERMITICITY; SYMMETRY; HAMILTONIANS; OSCILLATORS; MECHANICS; OPERATORS; SPECTRUM; TIME;
D O I
10.1103/PhysRevA.82.052113
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An N-level quantum model is proposed in which the energies are represented by an N-plet of zeros of a suitable classical orthogonal polynomial. The family of Gegenbauer polynomials G(n, a, x) is selected for illustrative purposes. The main obstacle lies in the non-Hermiticity (aka crypto-Hermiticity) of Hamiltonians H not equal H-dagger. We managed to (i) start from elementary secular equation G(N, a, E-n) = 0, (ii) keep our H, in the nearest-neighbor-interaction spirit, tridiagonal, (iii) render it Hermitian in an ad hoc, nonunique Hilbert space endowed with metric Theta not equal I, (iv) construct eligible metrics in closed forms ordered by increasing nondiagonality, and (v) interpret the model as a smeared N-site lattice.
引用
收藏
页数:10
相关论文
共 65 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
Acton FS., 1970, NUMERICAL METHODS WO
[3]  
[Anonymous], 1965, The algebraic eigenvalue problem
[4]   Non-Hermitian Hamiltonians of Lie algebraic type [J].
Assis, Paulo E. G. ;
Fring, Andreas .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (01)
[5]   Metrics and isospectral partners for the most generic cubic PT-symmetric non-Hermitian Hamiltonian [J].
Assis, Paulo E. G. ;
Fring, Andreas .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (24)
[6]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[7]   Families of Particles with Different Masses in PT-Symmetric Quantum Field Theory [J].
Bender, Carl M. ;
Klevansky, S. P. .
PHYSICAL REVIEW LETTERS, 2010, 105 (03)
[8]   Complex extension of quantum mechanics [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW LETTERS, 2002, 89 (27)
[9]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[10]   Nonperturbative calculation of symmetry breaking in quantum field theory [J].
Bender, CM ;
Milton, KA .
PHYSICAL REVIEW D, 1997, 55 (06) :R3255-R3259