A fluidized electrocatalysis approach for ammonia synthesis using oxygen vacancy-rich Co3O4 nanoparticles

被引:19
作者
Li, Wenyi [1 ,2 ]
Ye, Yixing [1 ]
Zhang, Shengbo [1 ]
Liang, Changhao [1 ]
Zhang, Haimin [1 ]
机构
[1] Acad Sci, Inst Solid State Phys, Ctr Environm & Energy,Anhui Key Lab Mmomat & Nano, CAS Ctr Excellence Nanosci,Key Lab Mat Phys,HFIPS, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
关键词
NITROGEN REDUCTION; AMBIENT ELECTROSYNTHESIS; N-2; REDUCTION; FIXATION; NANOCRYSTALS; CATALYSTS; DESIGN; NH3;
D O I
10.1039/d1qi00721a
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
We report a fluidized electrocatalysis system, composed of metallic titanium (Ti) mesh as the current collector and an aqueous ultrafine Co3O4 nanoparticle (NP) catalyst fabricated by the laser ablation in liquid (LAL) technique, for the efficient electrocatalytic nitrogen reduction reaction (NRR) to ammonia (NH3) synthesis. The results indicated that utilizing this fluidized electrocatalysis system, the LAL-fabricated ultrafine Co3O4 NPs highly dispersed in 0.1 M Na2SO4 solution (pH = 10.5) exhibit high NRR activity, affording an NH3 yield rate of 235.0 mu g h(-1) mg(cat.)(-1) and a faradaic efficiency (FE) of 16.3% at -0.30 V (vs. RHE). The superior NRR performance can be ascribed to the fluidized electrocatalysis approach to take full advantage of the exposed oxygen vacancies as active sites of Co3O4 NPs for N-2 adsorption and activation.
引用
收藏
页码:4026 / 4034
页数:9
相关论文
共 52 条
[1]   Doping strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation [J].
Cao, Na ;
Chen, Zheng ;
Zang, Ketao ;
Xu, Jie ;
Zhong, Jun ;
Luo, Jun ;
Xu, Xin ;
Zheng, Gengfeng .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]   Beyond fossil fuel-driven nitrogen transformations [J].
Chen, Jingguang G. ;
Crooks, Richard M. ;
Seefeldt, Lance C. ;
Bren, Kara L. ;
Bullock, R. Morris ;
Darensbourg, Marcetta Y. ;
Holland, Patrick L. ;
Hoffman, Brian ;
Janik, Michael J. ;
Jones, Anne K. ;
Kanatzidis, Mercouri G. ;
King, Paul ;
Lancaster, Kyle M. ;
Lymar, Sergei V. ;
Pfromm, Peter ;
Schneider, William F. ;
Schrock, Richard R. .
SCIENCE, 2018, 360 (6391)
[3]   Molybdenum Carbide Nanodots Enable Efficient Electrocatalytic Nitrogen Fixation under Ambient Conditions [J].
Cheng, Hui ;
Ding, Liang-Xin ;
Chen, Gao-Feng ;
Zhang, Lili ;
Xue, Jian ;
Wang, Haihui .
ADVANCED MATERIALS, 2018, 30 (46)
[4]   Suppression of Hydrogen Evolution Reaction in Electrochemical N2 Reduction Using Single-Atom Catalysts: A Computational Guideline [J].
Choi, Changhyeok ;
Back, Seoin ;
Kim, Na-Young ;
Lim, Juhyung ;
Kim, Yong-Hyun ;
Jung, Yousung .
ACS CATALYSIS, 2018, 8 (08) :7517-7525
[5]   Identification and elimination of false positives in electrochemical nitrogen reduction studies [J].
Choi, Jaecheol ;
Suryanto, Bryan H. R. ;
Wang, Dabin ;
Du, Hoang-Long ;
Hodgetts, Rebecca Y. ;
Vallana, Federico M. Ferrero ;
MacFarlane, Douglas R. ;
Simonov, Alexandr N. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[6]   Electrocatalytic Nitrogen Reduction at Low Temperature [J].
Deng, Jiao ;
Iniguez, Jesus A. ;
Liu, Chong .
JOULE, 2018, 2 (05) :846-856
[7]   Nitrogen reduction and functionalization by a multimetallic uranium nitride complex [J].
Falcone, Marta ;
Chatelain, Lucile ;
Scopelliti, Rosario ;
Zivkovic, Ivica ;
Mazzanti, Marinella .
NATURE, 2017, 547 (7663) :332-+
[8]   Rational design of electrocatalysts and photo(electro) catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions [J].
Guo, Chunxian ;
Ran, Jingrun ;
Vasileff, Anthony ;
Qiao, Shi-Zhang .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (01) :45-56
[9]   MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3 [J].
Han, Jingrui ;
Ji, Xuqiang ;
Ren, Xiang ;
Cui, Guanwei ;
Li, Lei ;
Xie, Fengyu ;
Wang, Hui ;
Li, Baihai ;
Sun, Xuping .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (27) :12974-12977
[10]   Theoretical study of single transition metal atom modified MoP as a nitrogen reduction electrocatalyst [J].
Han, Miaomiao ;
Wang, Guozhong ;
Zhang, Haimin ;
Zhao, Huijun .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (11) :5950-5955