Nb3Sn quadrupole magnets for the LHC IR

被引:13
作者
Sabbi, G [1 ]
Caspi, S [1 ]
Chiesa, L [1 ]
Coccoli, M [1 ]
Dietderich, DR [1 ]
Ferracin, P [1 ]
Gourlay, SA [1 ]
Hafalia, RR [1 ]
Lietzke, AF [1 ]
McInturff, AD [1 ]
Scanlan, RM [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
关键词
interaction region; Large Hadron Collider; quadrupole; superconducting magnets;
D O I
10.1109/TASC.2003.812635
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The development of insertion quadrupoles with 205 T/m gradient and 90 nun bore represents a promising strategy to achieve the ultimate luminosity goal of 2.5 x 10(34) cm(-2)s(-1) at the Large Hadron Collider (LHC). At present, Nb-3 Sn is the only practical conductor which can meet these requirements. Since Nb-3 Sn is brittle, and considerably more strain sensitive than NbTi, the design concepts and fabrication techniques developed for NbTi magnets need to be modified appropriately. In addition, IR magnets must provide high field quality and operate reliably under severe radiation loads. The results of conceptual design studies addressing these issues are presented.
引用
收藏
页码:1262 / 1265
页数:4
相关论文
共 22 条
[1]   Quench performance of Fermilab model magnets for the LHC inner triplet quadrupoles [J].
Andreev, N ;
Arkan, T ;
Bauer, P ;
Bossert, R ;
Brandt, J ;
Carson, J ;
Caspi, S ;
Chichili, DR ;
Chiesa, L ;
DiMarco, J ;
Feher, S ;
Ghosh, A ;
Glass, H ;
Kerby, J ;
Lamm, MJ ;
Makarov, A ;
McInturff, AD ;
Nobrega, A ;
Novitski, I ;
Ogitsu, T ;
Orris, D ;
Ozelis, JP ;
Peterson, T ;
Rabehl, R ;
Robotham, W ;
Scanlan, R ;
Schlabach, P ;
Sylvester, C ;
Strait, J ;
Tartaglia, M ;
Tompkins, JC ;
Velev, G ;
Yadav, S ;
Zlobin, AV .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2001, 11 (01) :1633-1636
[2]   Status of the LHC inner triplet quadrupole program at Fermilab [J].
Andreev, N ;
Arkan, T ;
Bauer, P ;
Bossert, R ;
Brandt, J ;
Carson, J ;
Caspi, S ;
Chichili, DR ;
Chiesa, L ;
Darve, C ;
Dimarco, J ;
Feher, S ;
Ghosh, A ;
Glass, H ;
Huang, Y ;
Kerby, J ;
Lamm, M ;
Markarov, AA ;
McInturff, AD ;
Nicol, T ;
Nobrega, A ;
Novitski, I ;
Ogitsu, T ;
Orris, D ;
Ozelis, JP ;
Page, T ;
Peterson, T ;
Rabehl, R ;
Robotham, W ;
Sabbi, G ;
Scanlan, R ;
Schlabach, P ;
Sylvester, C ;
Strait, J ;
Tartaglia, M ;
Tompkins, JC ;
Velev, G ;
Yadav, S ;
Zlobin, AV .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2001, 11 (01) :1558-1561
[3]  
[Anonymous], [No title captured]
[4]  
BARLETTA W, 2002, 240 LBNLCBP
[5]  
BENJEGERDES R, P 2001 PART ACC C CH, P208
[6]   The use of pressurized bladders for stress control of superconducting magnets [J].
Caspi, S ;
Gourlay, S ;
Hafalia, R ;
Lietzke, A ;
ONeill, J ;
Taylor, C ;
Jackson, A .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2001, 11 (01) :2272-2275
[7]  
CASPI S, 1997, P 15 INT C MAGN TECH, P175
[8]   Measurements of modulus of elasticity and thermal contraction of epoxy impregnated niobium-tin and niobium-titanium composites [J].
Chow, KP ;
Millos, GA .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1999, 9 (02) :213-215
[9]   Development of a Nb3Sn quadrupole magnet model [J].
Devred, A ;
Durante, M ;
Gourdin, C ;
Juster, FP ;
Peyrot, M ;
Rey, JM ;
Rifflet, JM ;
Streiff, F ;
Védrine, P .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2001, 11 (01) :2184-2187
[10]   Critical current of superconducting Rutherford cable in high magnetic fields with transverse pressure [J].
Dietderich, DR ;
Scanlan, RM ;
Walsh, RP ;
Miller, JR .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1999, 9 (02) :122-125