Computational Intelligence for Life Sciences

被引:4
作者
Besozzi, Daniela [1 ]
Manzoni, Luca [1 ]
Nobile, Marco S. [1 ]
Spolaor, Simone [1 ]
Castelli, Mauro [2 ]
Vanneschi, Leonardo [2 ]
Cazzaniga, Paolo [3 ,7 ]
Ruberto, Stefano [4 ,8 ]
Rundo, Leonardo [5 ,9 ]
Tangherloni, Andrea [6 ,10 ]
机构
[1] Univ Milano Bicocca, Dept Informat, Milan, Italy
[2] Univ Nova Lisboa, NOVA Informat Management Sch NOVA IMS, Campus Campolide, Lisbon, Portugal
[3] Univ Bergamo, Dept Human & Social Sci, Bergamo, Italy
[4] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[5] Univ Cambridge, Dept Radiol, Cambridge, England
[6] Univ Cambridge, Dept Haematol, Cambridge, England
[7] SYSBIO IT Ctr Syst Biol, Milan, Italy
[8] INFN, Gran Sasso Sci Inst, GSSI, Laquila, Italy
[9] Canc Res UK Cambridge Ctr, Cambridge, England
[10] Wellcome Trust Sanger Inst, Wellcome Trust Genome Campus, Hinxton, England
关键词
Computational Intelligence; Evolutionary Computation; Swarm Intelligence; Genetic Programming; Genetic Algorithm; Particle Swarm Optimization; Protein Folding; Haplotype Assembly; Parameter Estimation; PARTICLE SWARM OPTIMIZATION; PARAMETER-ESTIMATION; BEE COLONY; ALGORITHMS; ASSOCIATION; FRAMEWORK; VARIANTS; POWER; PSO;
D O I
10.3233/FI-2020-1872
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Computational Intelligence (CI) is a computer science discipline encompassing the theory, design, development and application of biologically and linguistically derived computational paradigms. Traditionally, the main elements of CI are Evolutionary Computation, Swarm Intelligence, Fuzzy Logic, and Neural Networks. CI aims at proposing new algorithms able to solve complex computational problems by taking inspiration from natural phenomena. In an intriguing turn of events, these nature-inspired methods have been widely adopted to investigate a plethora of problems related to nature itself. In this paper we present a variety of CI methods applied to three problems in life sciences, highlighting their effectiveness: we describe how protein folding can be faced by exploiting Genetic Programming, the inference of haplotypes can be tackled using Genetic Algorithms, and the estimation of biochemical kinetic parameters can be performed by means of Swarm Intelligence. We show that CI methods can generate very high quality solutions, providing a sound methodology to solve complex optimization problems in life sciences.
引用
收藏
页码:57 / 80
页数:24
相关论文
共 105 条
[1]  
Abdelbar AM, 2005, IEEE IJCNN, P1086
[2]  
Abraham A, 2009, STUD COMPUT INTELL, V203, P291
[3]  
[Anonymous], GENETIC ALGORITHMS S
[4]  
[Anonymous], P C COMP INT BIONF C
[5]  
[Anonymous], 1872, Nature, DOI DOI 10.1038/005318A0
[6]  
[Anonymous], WASP BRAINWASHED CAT
[7]  
[Anonymous], P 2017 IEEE C COMP I, DOI DOI 10.1109/CIBCB.2017.8058550
[8]  
[Anonymous], 2015, 2015 IEEE INT C FUZZ, DOI DOI 10.1109/FUZZ-IEEE.2015.7337957
[9]  
[Anonymous], BMC BIOINF
[10]  
[Anonymous], 1995, Int. Conf. Neural Netw. (ICNN)