Structural model of homogeneous As-S glasses derived from Raman spectroscopy and high-resolution XPS

被引:57
作者
Golovchak, R. [1 ]
Shpotyuk, O. [1 ,2 ]
Mccloy, J. S. [3 ]
Riley, B. J. [3 ]
Windisch, C. F. [3 ]
Sundaram, S. K. [3 ]
Kovalskiy, A. [4 ]
Jain, H. [4 ]
机构
[1] Lviv Sci Res Inst Mat SRC Carat, UA-79031 Lvov, Ukraine
[2] Inst Phys Jan Dlugosz Univ, PL-42200 Czestochowa, Poland
[3] Pacific NW Natl Lab, Richland, WA 99354 USA
[4] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA
关键词
chalcogenide glass; Raman spectroscopy; X-ray photoelectron spectroscopy; structure; quasi-tetrahedral unit; DIFFERENTIAL SCANNING CALORIMETRY; CHALCOGENIDE GLASSES; INTERMEDIATE; SELENIUM; VALENCE; ORDER;
D O I
10.1080/14786435.2010.510455
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The structure of homogeneous bulk AsxS100-x (25 x 42) glasses, prepared by the conventional rocking-melting-quenching method, was investigated using high-resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. It is shown that the main building blocks of their glass networks are regular AsS3/2 pyramids and sulfur chains. In the S-rich domain, the existence of quasi-tetrahedral (QT) S = As(S1/2)3 units is deduced from XPS data, but with a concentration not exceeding 3-5% of total atomic sites. Therefore, QT units do not appear as primary building blocks of the glass backbone in these materials, and an optimally-constrained network may not be an appropriate description for glasses when x 40. It is shown that, in contrast to Se-based glasses, the 'chain-crossing' model is only partially applicable to sulfide glasses.
引用
收藏
页码:4489 / 4501
页数:13
相关论文
共 37 条
[21]  
Li WY, 2005, J APPL PHYS, V98, DOI [10.1063/1.2099514, 10.1063/1.2009815]
[22]   Infrared glasses [J].
Lucas, J .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 1999, 4 (02) :181-187
[23]   Structure-optical property correlations of arsenic sulfide glasses in visible, infrared and sub-millimeter regions [J].
McCloy, John S. ;
Riley, Brian J. ;
Sundaram, S. K. ;
Qiao, Hong A. ;
Crum, Jarrod V. ;
Johnson, Bradley R. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2010, 356 (25-27) :1288-1293
[24]  
MORI T, 1984, J NON-CRYST SOLIDS, V65, P269, DOI 10.1016/0022-3093(84)90052-8
[25]  
MYSEN BO, 1982, AM MINERAL, V67, P686
[26]   CHALCOGENIDE GLASSES TRANSMITTING IN INFRARED BETWEEN 1 AND 20 MU - A STATE OF ART REVIEW [J].
SAVAGE, JA ;
NEILSON, S .
INFRARED PHYSICS, 1965, 5 (04) :195-&
[27]  
Schultz-Sellack C., 1870, ANN PHYS, V139, P182
[28]  
Seal S, 2002, PHYS CHEM GLASSES, V43, P59
[29]   Chalcogenide glasses and structures for quantum sensing [J].
Sundaram, SK ;
Johnson, BR ;
Schweiger, MJ ;
Martinez, JE ;
Riley, BJ ;
Saraf, LV ;
Anheier, NC ;
Allen, PJ ;
Schultz, JF .
QUANTUM SENSING AND NANOPHOTONIC DEVICES, 2004, 5359 :234-245
[30]  
TANAKA K, 2003, PHOTO INDUCED METAST