STGRN: A Spatial-Temporal Graph Resonance Network for Social Connection Inference

被引:3
|
作者
Min, Shengjie [1 ]
Peng, Jing [2 ]
Luo, Guangchun [1 ]
Gao, Zhan [3 ]
Fang, Bo [4 ]
Rao, Dingyuan [4 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[2] Sichuan Prov Publ Secur Dept, Chengdu, Peoples R China
[3] Sichuan Univ, Chengdu, Peoples R China
[4] ChinaCloud Informat Technol Co Ltd, Chengdu, Peoples R China
来源
2021 THE 13TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2021) | 2021年
关键词
Trajectory Data Mining; Graph Neural Network; Social Connection Inference; Social Network Analysis; DISCOVERY;
D O I
10.1109/ICCAE51876.2021.9426115
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Social Connection Inference (SCI), as one of the most important social network analysis techniques, has been a popular research direction for decades. A lot of studies have been utilizing spatial-temporal co-occurrence events for mining latent social relations. The previous studies mainly look into the characteristics of the point-to-point meetup events. Moreover. some methods employ the social neighborhood of two target objects for better prediction. However, we have rarely seen research utilizing the network structure formed by meetup events for better SCI performance. In this paper, we propose a graph neural network framework, namely Spatial-Temporal Graph Resonance Network (STGRN), for social connection inference enhancement. Firstly, we calculate co-occurrence events' characteristics, including two novel features we designed: Ceo-Spread and ActM-Rate. Secondly, we build a network embedding based on meetup relations. Thirdly, we combine the meetup events, social network, and co-occurrence network for the final prediction. In the end, we conduct extensive experiments on public datasets to prove our method's effectiveness.
引用
收藏
页码:48 / 53
页数:6
相关论文
共 50 条
  • [21] Based Matrix Fusion Spatial-Temporal Graph Neural Network for Traffic Flow Prediction
    Jing, Xin
    Zhu, Hai
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 1171 - 1175
  • [22] STMG: Spatial-Temporal Mobility Graph for Location Prediction
    Pan, Xuan
    Cai, Xiangrui
    Zhang, Jiangwei
    Wen, Yanlong
    Zhang, Ying
    Yuan, Xiaojie
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT I, 2021, 12681 : 667 - 675
  • [23] Dynamic Spatial-Temporal Graph Model for Disease Prediction
    Senthilkumar, Ashwin
    Gupte, Mihir
    Shridevi, S.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (06) : 950 - 957
  • [24] Graph Attention Network With Spatial-Temporal Clustering for Traffic Flow Forecasting in Intelligent Transportation System
    Chen, Yan
    Shu, Tian
    Zhou, Xiaokang
    Zheng, Xuzhe
    Kawai, Akira
    Fueda, Kaoru
    Yan, Zheng
    Liang, Wei
    Wang, Kevin I-Kai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8727 - 8737
  • [25] Spatial-Temporal Aware Inductive Graph Neural Network for C-ITS Data Recovery
    Liang, Wei
    Li, Yuhui
    Xie, Kun
    Zhang, Dafang
    Li, Kuan-Ching
    Souri, Alireza
    Li, Keqin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8431 - 8442
  • [26] Spatial-temporal Cellular Traffic Prediction: A Novel Method Based on Causality and Graph Attention Network
    Chen, Xiangyu
    Chuai, Gang
    Zhang, Kaisa
    Gao, Weidong
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [27] ConSTGAT: Contextual Spatial-Temporal Graph Attention Network for Travel Time Estimation at Baidu Maps
    Fang, Xiaomin
    Huang, Jizhou
    Wang, Fan
    Zeng, Lingke
    Liang, Haijin
    Wang, Haifeng
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 2697 - 2705
  • [28] Multi-view Cascading Spatial-Temporal Graph Neural Network for Traffic Flow Forecasting
    Liu, Zibo
    Fu, Kaiqun
    Liu, Xiaotong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT II, 2022, 13530 : 605 - 616
  • [29] Semi-dynamic spatial-temporal graph neural network for traffic state prediction in waterways
    Li, Le
    Pan, Mingyang
    Liu, Zongying
    Sun, Hui
    Zhang, Ruolan
    OCEAN ENGINEERING, 2024, 293
  • [30] Airport surface movement prediction and safety assessment with spatial-temporal graph convolutional neural network
    Zhang, Xiaoge
    Zhong, Sanqiang
    Mahadevanb, Sankaran
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2022, 144