Numerical analysis of time integration errors for nonequilibrium radiation diffusion

被引:29
作者
Knoll, D. A.
Lowrie, R. B.
Morel, J. E.
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Texas A&M Univ, College Stn, TX 77843 USA
关键词
radiation diffusion; asymptotic analysis; modified equation analysis;
D O I
10.1016/j.jcp.2007.05.034
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Numerical analysis of time integration errors for nonequilibrium radiation diffusion is considered. Two first-order implicit time integration methods are studied. Asymptotic analysis and modified equation analysis are applied to both time integration methods. Numerical experiments are used to highlight the results of the analysis. Asymptotic analysis is used to highlight the source of temperature spiking when a hot radiation wave propagates into a cold material. Modified equation analysis is used to provide insight into the thermal wave speed coming from the two different first-order methods. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1332 / 1347
页数:16
相关论文
共 21 条
[1]   Preconditioning strategies or fully implicit radiation diffusion with material-energy transfer [J].
Brown, PN ;
Woodward, CS .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (02) :499-516
[2]   Asymptotic equilibrium diffusion analysis of time-dependent Monte Carlo methods for grey radiative transfer [J].
Densmore, JD ;
Larsen, EW .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 199 (01) :175-204
[3]  
EDWARD W, 1987, J COMPUT PHYS, V71, P50
[4]   ON THE SCOPE OF THE METHOD OF MODIFIED EQUATIONS [J].
GRIFFITHS, DF ;
SANZSERNA, JM .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (03) :994-1008
[5]  
Hirt C, 1968, J COMPUT PHYS, V2, P339, DOI DOI 10.1016/0021-9991(68)90041-7
[6]   An efficient nonlinear solution method for non-equilibrium radiation diffusion [J].
Knoll, DA ;
Rider, WJ ;
Olson, GL .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1999, 63 (01) :15-29
[7]   On balanced approximations for time integration of multiple time scale systems [J].
Knoll, DA ;
Chacon, L ;
Margolin, LG ;
Mousseau, VA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 185 (02) :583-611
[8]   Nonlinear convergence, accuracy, and time step control in nonequilibrium radiation diffusion [J].
Knoll, DA ;
Rider, WJ ;
Olson, GL .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2001, 70 (01) :25-36
[9]   ASYMPTOTIC ANALYSIS OF RADIATIVE-TRANSFER PROBLEMS [J].
LARSEN, EW ;
POMRANING, GC ;
BADHAM, VC .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1983, 29 (04) :285-310
[10]   ASYMPTOTIC SOLUTIONS OF NUMERICAL TRANSPORT PROBLEMS IN OPTICALLY THICK, DIFFUSIVE REGIMES .2. [J].
LARSEN, EW ;
MOREL, JE .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 83 (01) :212-236