Experimental and theoretical analysis of cellular instability in lean H2-CH4-air flames at elevated pressures

被引:77
作者
Okafor, Ekenechukwu C. [1 ]
Nagano, Yukihide [1 ]
Kitagawa, Toshiaki [1 ]
机构
[1] Kyushu Univ, Fac Engn, Dept Mech Engn, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
关键词
Hydrogen; Methane; Cellular instability; Laminar burning velocity; Markstein length; Thermo-diffusive effects; HYDROGEN-AIR FLAMES; DARRIEUS-LANDAU INSTABILITY; LAMINAR BURNING VELOCITY; MARKSTEIN NUMBERS; SELF-ACCELERATION; LARGE-SCALE; TURBULENT; METHANE; PROPAGATION; HYDROCARBON;
D O I
10.1016/j.ijhydene.2016.02.151
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cellular instability in spherical propagating hydrogen-methane-air flames was studied experimentally in a constant volume chamber at an equivalence ratio of 0.8 and mixture temperature of 350 K. The mole fraction of hydrogen in the binary fuel was varied from 0 to 1.0 for mixture pressures up to 0.50 MPa. Cellular instability started earlier with an increase in the hydrogen mole fraction and mixture pressure. Self-acceleration of some of the propagating cellular flames was recorded and the acceleration increased with hydrogen mole fraction and mixture pressure. The unstretched laminar burning velocity was obtained from experiments and 1-D simulations of the outwardly propagating flames. Asymptotic theories gave a satisfactory qualitative prediction of the trends in the Markstein length, and the critical flame size for the onset of cellular instability. It was concluded that the Markstein length changed to a negative value at elevated pressure due to increased sensitivity of the burning velocity to thermo-diffusive effects. Copyright (c) 2016, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:6581 / 6592
页数:12
相关论文
共 50 条
  • [21] An experimental study on H2/NH3/CH4-air laminar propagating spherical flames at elevated pressure and oxygen enrichment
    Yasiry, Ahmed
    Wang, Jinhua
    Zhang, Longkai
    Abdulraheem, Ahmed A. A.
    Cai, Xiao
    Huang, Zuohua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 58 : 28 - 39
  • [22] Direct numerical simulation of high pressure turbulent lean premixed CH4/H2 - Air slot flames
    Cecere, D.
    Giacomazzi, E.
    Arcidiacono, N. M.
    Picchia, F. R.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (10) : 5184 - 5198
  • [23] Experimental Study in H2/CO/CH4-Air and H2/CO/C3H8-Air Premixed Flames. Part 1: Laminar burning velocities and Markstein lengths
    Tran Manh Vu
    Park, Jeong
    Kim, Jeong Soo
    Kwon, Oh Boong
    Yun, Jin Han
    Keel, Sang In
    EXPLOSION, SHOCK WAVE AND HIGH-ENERGY REACTION PHENOMENA, 2011, 673 : 65 - +
  • [24] Experimental investigation on laminar burning velocities and flame intrinsic instabilities of lean and stoichiometric H2/CO/air mixtures at reduced, normal and elevated pressures
    Li, Hongmeng
    Li, Guoxiu
    Sun, Zuoyu
    Yu, Yusong
    Zhai, Yue
    Zhou, Zihang
    FUEL, 2014, 135 : 279 - 291
  • [25] Experimental Investigation of the Structure and NO Emissions from Swirling Lean Premixed NH3/CH4/Air Flames and Their Correlation with OH
    Wang, Shixing
    Wang, Guoqing
    Elbaz, Ayman M.
    Guiberti, Thibault F.
    Roberts, William L.
    ENERGY & FUELS, 2023, 37 (17) : 13341 - 13353
  • [26] Experimental study on flame instabilities of laminar premixed CH4/H2/air non-adiabatic flat flames
    Jin, Wu
    Wang, Jinhua
    Nie, Yaohui
    Yu, Senbin
    Huang, Zuohua
    FUEL, 2015, 159 : 599 - 606
  • [27] Laminar Burning Velocity and Markstein Length of CH4/CO2/Air Premixed Flames at Various Equivalence Ratios and CO2 Concentrations Under Elevated Pressure
    Anggono, Willyanto
    Hayakawa, Akihiro
    Okafor, Ekenechukwu C.
    Gotama, Gabriel Jeremy
    Wongso, Stevan
    COMBUSTION SCIENCE AND TECHNOLOGY, 2021, 193 (14) : 2369 - 2388
  • [28] Experimental and kinetic study on laminar burning velocities of NH3/CH4/ H2S/air flames
    Zhu, Runfan
    Han, Xinlu
    Zhang, Ziyue
    He, Yong
    Wang, Zhihua
    FUEL, 2023, 332
  • [29] Laminar burning velocities of CH4/O2/N2 and oxygen-enriched CH4/O2/CO2 flames at elevated pressures measured using the heat flux method
    Wang, Shixing
    Wang, Zhihua
    He, Yong
    Han, Xinlu
    Sun, Zhiwei
    Zhu, Yanqun
    Costa, Mario
    FUEL, 2020, 259
  • [30] Structures of Laminar Lean Premixed H2/CH4/Air Polyhedral Flames: Effects of Flow Velocity, H2 Content and Equivalence Ratio
    Shi, Shuguo
    Breicher, Adrian
    Schultheis, Robin
    Hartl, Sandra
    Barlow, Robert S.
    Geyer, Dirk
    Dreizler, Andreas
    FLOW TURBULENCE AND COMBUSTION, 2024, 113 (04) : 1081 - 1110