Singular Value Decomposition Processing for In vivo Cardiac Photoacoustic Imaging

被引:0
|
作者
Al Mukaddim, Rashid [1 ,2 ]
Varghese, Tomy [1 ,2 ]
机构
[1] Univ Wisconsin, Dept ECE, Madison, WI 53706 USA
[2] Univ Wisconsin, Sch Med & Publ Hlth, Dept Med Phys, Madison, WI 53706 USA
来源
MEDICAL IMAGING 2021: ULTRASONIC IMAGING AND TOMOGRAPHY | 2021年 / 11602卷
基金
美国国家卫生研究院;
关键词
Photoacoustic imaging; preclinical murine cardiac photoacoustic imaging; delay-and-sum beamforming; singular value decomposition; spatiotemporal SVD processing; TO-NOISE RATIO; MICROSCOPY; DOPPLER;
D O I
10.1117/12.2581259
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Photoacoustic imaging (PAI) can be used to infer molecular information about myocardial health non-invasively in vivo using optical excitation at ultrasonic resolution. For clinical and preclinical linear array imaging systems, conventional delay-and-sum (DAS) beamforming is typically used. However, DAS is prone to image quality degradation when applied to murine cardiac PAI resulting in low signal specificity in the myocardium. To address this, we propose a spatiotemporal singular value decomposition (SVD) processing method using electrocardiogram (ECG) and respiratory gated in vivo cardiac murine PAI data. SVD was applied on a two-dimensional spatiotemporal matrix generated using a three-dimensional volume of DAS beamformed complex PAI data over a cardiac cycle. The singular value spectrum (SVS) was then filtered to remove contributions from static clutter and random noise. Finally, SVD processing of beamformed images were derived using filtered SVS and inverse SVD computations. In vivo murine cardiac PAI was performed by collecting single wavelength (850 nm) photoacoustic channel data using two healthy mice. Qualitative comparison with DAS shows that SVD processed images had better signal specificity and contrast. DAS and SVD processed PAI were quantitatively evaluated by calculating contrast ratio (CR), generalized contrast-to-noise ratio (gCNR) and signal-to-noise ratio (SNR). SVD processed PAI had higher CR, gCNR and SNR values compared to DAS results. For example, at the end-systolic phase for mouse 1, the SVD processed image had 100.48% higher gCNR compared to the DAS image. These results suggest that significantly better-quality images can be realized using spatiotemporal SVD processing for in vivo murine cardiac PAI.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Coupled Sub-aperture and Spatiotemporal Singular Value Decomposition Processing for Cardiac Photoacoustic Imaging In Vivo
    Al Mukaddim, Rashid
    Weichmann, Ashley M.
    Mitchell, Carol C.
    Varghese, Tomy
    INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS 2021), 2021,
  • [2] Enhancement of in vivo cardiac photoacoustic signal specificity using spatiotemporal singular value decomposition
    Al Mukaddim, Rashid
    Weichmann, Ashley M.
    Mitchell, Carol C.
    Varghese, Tomy
    JOURNAL OF BIOMEDICAL OPTICS, 2021, 26 (04)
  • [3] Analysis of a photoacoustic imaging system by singular value decomposition
    Roumeliotis, Michael
    Chaudhary, Govind
    Anastasio, Mark
    Stodilka, Robert
    Immucci, Andrea
    Ng, Eldon
    Carson, Jeffrey J. L.
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2010, 2010, 7564
  • [4] Analysis of a photoacoustic imaging system by the crosstalk matrix and singular value decomposition
    Roumeliotis, Michael
    Stodilka, Robert Z.
    Anastasio, Mark A.
    Chaudhary, Govind
    Al-Aabed, Hazem
    Ng, Eldon
    Immucci, Andrea
    Carson, Jeffrey J. L.
    OPTICS EXPRESS, 2010, 18 (11): : 11406 - 11417
  • [5] Singular value decomposition analysis of a photoacoustic imaging system and 3D imaging at 0.7 FPS
    Roumeliotis, Michael B.
    Stodilka, Robert Z.
    Anastasio, Mark. A.
    Ng, Eldon
    Carson, Jeffrey J. L.
    OPTICS EXPRESS, 2011, 19 (14): : 13405 - 13417
  • [6] Identification and removal of laser-induced noise in photoacoustic imaging using singular value decomposition
    Hill, Emma R.
    Xia, Wenfeng
    Clarkson, Matthew J.
    Desjardins, Adrien E.
    BIOMEDICAL OPTICS EXPRESS, 2017, 8 (01): : 68 - 77
  • [7] Singular value decomposition ghost imaging
    Zhang, Xue
    Meng, Xiangfeng
    Yang, Xiulun
    Wang, Yurong
    Yin, Yongkai
    Li, Xianye
    Peng, Xiang
    He, Wenqi
    Dong, Guoyan
    Chen, Hongyi
    OPTICS EXPRESS, 2018, 26 (10): : 12948 - 12958
  • [8] Spatiotemporal singular value decomposition for denoising in photoacoustic imaging with a low-energy excitation light source
    Shi, Mengjie
    Vercauteren, Tom
    Xia, Wenfeng
    BIOMEDICAL OPTICS EXPRESS, 2022, 13 (12) : 6416 - 6430
  • [9] Singular value decomposition compressed ghost imaging
    Zhang, Cheng
    Tang, Jun
    Zhou, Jiaxuan
    Wei, Sui
    APPLIED PHYSICS B-LASERS AND OPTICS, 2022, 128 (03):
  • [10] Singular value decomposition compressed ghost imaging
    Cheng Zhang
    Jun Tang
    Jiaxuan Zhou
    Sui Wei
    Applied Physics B, 2022, 128