Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment

被引:196
作者
Shawky, Hosam A. [1 ,2 ]
Chae, So-Ryong [3 ]
Lin, Shihong [2 ]
Wiesner, Mark R. [2 ]
机构
[1] Desert Res Ctr, Water Treatment & Desalinat Unit, Cairo, Egypt
[2] Duke Univ, Dept Civil & Environm Engn, Durham, NC 27708 USA
[3] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
基金
美国国家科学基金会;
关键词
Multi-wall carbon nanotubes; Aromatic polyamide; Nanocomposite membrane; Reinforcement; Water treatment; NANOTUBES; SOLUBILIZATION; REINFORCEMENT; PERFORMANCE; SEPARATION; PROPERTY; POLYMERS; FILMS;
D O I
10.1016/j.desal.2010.12.051
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Multi-wall carbon nanotube (MWCNT)/aromatic polyamide (PA) nanocomposite membranes were synthesized by a polymer grafting process. Surface morphology, roughness, and mechanical strength of the resultant nanocomposite membranes were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and micro-strain analysis, respectively. SEM and AFM images showed that MWCNTs were well dispersed in the PA matrix. Measurements of mechanical properties of this composite showed increasing membrane strength with increasing MWCNT content with monotonic increases in Young's modulus, toughness, and tensile strength. The addition of MWCNTs also improved the rejection of both salt and organic matter relative to the 10% PA membrane base case. The nanocomposite membrane synthesized with 15 mg/g MWCNT in a 10% PA casting solution rejected NaCl and humic acid by factors of 3.17 and 1.67 respectively relative to the PA membrane without MWCNTs, while membrane permeability decreased by 6.5%. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 50
页数:5
相关论文
共 27 条
[1]  
Brunet L., 2008, ENVIRON ENG SCI, V25, P1
[2]   Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites [J].
Cadek, M ;
Coleman, JN ;
Barron, V ;
Hedicke, K ;
Blau, WJ .
APPLIED PHYSICS LETTERS, 2002, 81 (27) :5123-5125
[3]   Reinforcement of polymers with carbon nanotubes:: The role of nanotube surface area [J].
Cadek, M ;
Coleman, JN ;
Ryan, KP ;
Nicolosi, V ;
Bister, G ;
Fonseca, A ;
Nagy, JB ;
Szostak, K ;
Béguin, F ;
Blau, WJ .
NANO LETTERS, 2004, 4 (02) :353-356
[4]   High-performance nanotube-reinforced plastics: Understanding the mechanism of strength increase [J].
Coleman, JN ;
Cadek, M ;
Blake, R ;
Nicolosi, V ;
Ryan, KP ;
Belton, C ;
Fonseca, A ;
Nagy, JB ;
Gun'ko, YK ;
Blau, WJ .
ADVANCED FUNCTIONAL MATERIALS, 2004, 14 (08) :791-798
[5]   Mechanical reinforcement of polymers using carbon nanotubes [J].
Coleman, JN ;
Khan, U ;
Gun'ko, YK .
ADVANCED MATERIALS, 2006, 18 (06) :689-706
[6]   Multiwalled carbon nanotube/polymer nanocomposites:: Processing and properties [J].
Dalmas, F ;
Chazeau, L ;
Gauthier, C ;
Masenelli-Varlot, K ;
Dendievel, R ;
Cavaillé, JY ;
Forró, L .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2005, 43 (10) :1186-1197
[7]   Stable dispersions of fullerenes, C60 and C70, in water.: Preparation and characterization [J].
Deguchi, S ;
Alargova, RG ;
Tsujii, K .
LANGMUIR, 2001, 17 (19) :6013-6017
[8]   Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocomposites [J].
Dufresne, A ;
Paillet, M ;
Putaux, JL ;
Canet, R ;
Carmona, F ;
Delhaes, P ;
Cui, S .
JOURNAL OF MATERIALS SCIENCE, 2002, 37 (18) :3915-3923
[9]   High weight fraction surfactant solubilization of single-wall carbon nanotubes in water [J].
Islam, MF ;
Rojas, E ;
Bergey, DM ;
Johnson, AT ;
Yodh, AG .
NANO LETTERS, 2003, 3 (02) :269-273
[10]   Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films [J].
Kilbride, BE ;
Coleman, JN ;
Fraysse, J ;
Fournet, P ;
Cadek, M ;
Drury, A ;
Hutzler, S ;
Roth, S ;
Blau, WJ .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (07) :4024-4030