Contribution to Improvement of Fatigue Properties of Zr-4 Alloy: Gradient Nanostructured Surface Layer versus Compressive Residual Stress

被引:8
作者
Geng, Donghui [1 ]
Sun, Qiaoyan [1 ]
Xin, Chao [2 ]
Xiao, Lin [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[2] XIAN Rare Met Mat Inst Co Ltd, Xian 710016, Peoples R China
基金
中国国家自然科学基金;
关键词
gradient nanostructured surface layer; compressive residual stress; Zr-4; alloy; fatigue properties; LOW-CYCLE FATIGUE; 316L STAINLESS-STEEL; PURE TITANIUM; LIFE IMPROVEMENT; BEHAVIOR; ZIRCALOY-4; MICROSTRUCTURE; ENHANCEMENT; METALS; PHASE;
D O I
10.3390/nano11113125
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The gradient nanostructured (GNS) layer forms beneath the surface of Zr-4 samples by the surface mechanical grinding treatment (SMGT) process, which increases the fatigue strength apparently due to the synergistic effect of the gradient nanostructured layer and compressive residual stress. The SMGTed Zr-4 samples are subjected to annealing to remove residual stress (A-SMGT) and the individual effect of the GNS layer and compressive residual stress can be clarified. The results show that the gradient nanostructure in the surface is stable after annealing at 400 & DEG;C for 2 h but residual stress is apparently removed. Both SMGTed and A-SMGTed Zr-4 samples exhibit higher fatigue strength than that of coarse-grained (CG) Zr-4 alloy. The fatigue fracture of Zr-4 alloy indicates that the hard GNS surface layer hinders fatigue cracks from approaching the surface and leads to a lower fatigue striation space than that of CG Zr-4 samples. The offset fatigue strength of 10(6) cycles is taken for SMRT-ed, A-SMRT-ed, and CG Zr-4 samples and the results indicate clearly that the GNS surface layer is a key factor for the improvement of fatigue strength of the Zr-4 alloy with surface mechanical grinding treatment.
引用
收藏
页数:13
相关论文
共 35 条
[1]   Cyclic softening mechanisms of Zircaloy-4 [J].
Armas, AF ;
Hereñú, S ;
Bolmaro, R ;
Alvarez-Armas, I .
JOURNAL OF NUCLEAR MATERIALS, 2004, 326 (2-3) :195-200
[2]   A detailed study of the relationship between fatigue crack growth rate and striation spacing in a range of low alloy ferritic steels [J].
Bulloch, J. H. ;
Callagy, A. G. .
ENGINEERING FAILURE ANALYSIS, 2010, 17 (01) :168-176
[3]   Effects of strain rate on the low cycle fatigue behavior of AZ31B magnesium alloy processed by SMAT [J].
Chen, Gang ;
Gao, Jianwen ;
Cui, Yun ;
Gao, Hong ;
Guo, Xiang ;
Wu, Suzhou .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 735 :536-546
[4]   Impact of surface gradient structures on mechanical properties of a dual- phase AlCrFe2(Ni0.85Co0.15)2 multi-component eutectic alloy [J].
Cheng, Q. ;
Fang, T. H. ;
Xie, P. ;
Zhao, Y. ;
You, J. H. ;
Xu, X. D. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 882
[5]   Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper [J].
Fang, T. H. ;
Li, W. L. ;
Tao, N. R. ;
Lu, K. .
SCIENCE, 2011, 331 (6024) :1587-1590
[6]   Behavior of high-burnup PWR fuels with low-tin Zircaloy-4 cladding under reactivity-initiated-accident conditions [J].
Fuketa, T ;
Sasajima, H ;
Sugiyama, T .
NUCLEAR TECHNOLOGY, 2001, 133 (01) :50-62
[7]   Microscopic characterization on low cycle fatigue behavior at room temperature of Zircaloy-4 alloy with recrystallized microstructure [J].
Han, Fuzhou ;
Liu, Chengze ;
Yuan, Fusen ;
Zhang, Yingdong ;
Ali, Muhammad ;
Gu, Hengfei ;
Li, Geping .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 778 :318-326
[8]   Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer [J].
Huang, H. W. ;
Wang, Z. B. ;
Lu, J. ;
Lu, K. .
ACTA MATERIALIA, 2015, 87 :150-160
[9]   Simultaneous enhancement of stress- and strain-controlled fatigue properties in 316L stainless steel with gradient nanostructure [J].
Lei, Y. B. ;
Wang, Z. B. ;
Xu, J. L. ;
Lu, K. .
ACTA MATERIALIA, 2019, 168 :133-142
[10]   The effect of nanostructured surface layer on the fatigue behaviors of a carbon steel [J].
Li, D. ;
Chen, H. N. ;
Xu, H. .
APPLIED SURFACE SCIENCE, 2009, 255 (06) :3811-3816