The inverse scattering transform and soliton solutions of a combined modified Korteweg-de Vries equation

被引:76
作者
Ma, Wen-Xiu [1 ,2 ,3 ,4 ,5 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[2] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[3] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[4] Shanghai Univ Elect Power, Coll Math & Phys, Shanghai 200090, Peoples R China
[5] North West Univ, Dept Math Sci, Int Inst Symmetry Anal & Math Modelling, Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
关键词
Inverse scattering transform; Riemann-Hilbert problem; Soliton solution; RIEMANN-HILBERT APPROACH; HAMILTONIAN-STRUCTURE; INTEGRABLE SYSTEMS; SEMIDIRECT SUMS; MKDV HIERARCHY; REPRESENTATIONS; ALGEBRAS; IDENTITY;
D O I
10.1016/j.jmaa.2018.11.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The inverse scattering transform is developed for a combined modified Korteweg de Vrie equation through the technique of Riemann Hilbert problems. From special Riemann Hilbert problems with an identity jump matrix, soliton solutions are generated, which corresponds to the inverse scattering problems with reflectionless coefficients. A specific example of two-soliton solutions is explicitly presented, together with its 3d plots, contour plots and x-curve plots. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:796 / 811
页数:16
相关论文
共 50 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]  
Ablowitz MJ., 1981, Solitons and the Inverse Scattering Transform, V4
[3]  
[Anonymous], SOVIET MATH DOKL
[4]  
[Anonymous], 2016, INT J MOD PHYS B, DOI DOI 10.1142/S021797921640018X
[5]  
Belokolos ED, 1994, Algebro-geometric approach to nonlinear integrable equations
[6]  
Doktorov E.V., 2007, MATH PHYS STUDIES, V28
[7]   Generalized fractional supertrace identity for Hamiltonian structure of NLS-MKdV hierarchy with self-consistent sources [J].
Dong, Huan He ;
Guo, Bao Yong ;
Yin, Bao Shu .
ANALYSIS AND MATHEMATICAL PHYSICS, 2016, 6 (02) :199-209
[8]   Generalised (2+1)-dimensional Super MKdV Hierarchy for Integrable Systems in Soliton Theory [J].
Dong, Huanhe ;
Zhao, Kun ;
Yang, Hongwei ;
Li, Yuqing .
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2015, 5 (03) :256-272
[9]   The unified method: I. Nonlinearizable problems on the half-line [J].
Fokas, A. S. ;
Lenells, J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (19)
[10]   SOLITON-SOLUTIONS OF THE KORTEWEG-DEVRIES AND KADOMTSEV-PETVIASHVILI EQUATIONS - THE WRONSKIAN TECHNIQUE [J].
FREEMAN, NC ;
NIMMO, JJC .
PHYSICS LETTERS A, 1983, 95 (01) :1-3