Large-scale hierarchical organization of nanowire arrays for integrated nanosystems

被引:714
作者
Whang, D
Jin, S
Wu, Y
Lieber, CM [1 ]
机构
[1] Harvard Univ, Dept Chem & Biol Chem, Cambridge, MA 02138 USA
[2] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
D O I
10.1021/nl0345062
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The assembly of nanowires and nanotubes into arrays patterned on multiple length scales is critical to the realization of integrated electronic and photonic nanotechnologies. A general and efficient solution-based method for controlling organization and hierarchy of nanowire structures over large areas has been developed. Nanowires were aligned with controlled nanometer to micrometer scale pitch using the Langmuir-Blodgett technique and transferred to planar substrates in a layer-by-layer process to form parallel and crossed nanowire structures. The parallel and crossed nanowire structures were efficiently patterned into repeating arrays of controlled dimensions and pitch using photolithography to yield hierarchical structures with order defined from the nanometer through centimeter length scales. In addition, electrical transport studies show that reliable electrical contacts can be made to the hierarchical nanowire arrays prepared by this method. This solution-based process offers a flexible pathway for bottom-up assembly of virtually any nanowire material into highly integrated and hierarchically organized nanodevices needed for a broad range of functional nanosystems.
引用
收藏
页码:1255 / 1259
页数:5
相关论文
共 21 条
[1]   Construction and use of LB deposition machines for pilot production [J].
Albrecht, O ;
Matsuda, H ;
Eguchi, K ;
Nakagiri, T .
THIN SOLID FILMS, 1996, 284 :152-156
[2]   Molecular electronics with carbon nanotubes [J].
Avouris, P .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) :1026-1034
[3]   Nanowire resonant tunneling diodes [J].
Björk, MT ;
Ohlsson, BJ ;
Thelander, C ;
Persson, AI ;
Deppert, K ;
Wallenberg, LR ;
Samuelson, L .
APPLIED PHYSICS LETTERS, 2002, 81 (23) :4458-4460
[4]   Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J].
Cui, Y ;
Lieber, CM .
SCIENCE, 2001, 291 (5505) :851-853
[5]   Diameter-controlled synthesis of single-crystal silicon nanowires [J].
Cui, Y ;
Lauhon, LJ ;
Gudiksen, MS ;
Wang, JF ;
Lieber, CM .
APPLIED PHYSICS LETTERS, 2001, 78 (15) :2214-2216
[6]   Array-based architecture for FET-based, nanoscale electronics [J].
DeHon, A .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2003, 2 (01) :23-32
[7]   Single-nanowire electrically driven lasers [J].
Duan, XF ;
Huang, Y ;
Agarwal, R ;
Lieber, CM .
NATURE, 2003, 421 (6920) :241-245
[8]   Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J].
Duan, XF ;
Huang, Y ;
Cui, Y ;
Wang, JF ;
Lieber, CM .
NATURE, 2001, 409 (6816) :66-69
[9]   Growth of nanowire superlattice structures for nanoscale photonics and electronics [J].
Gudiksen, MS ;
Lauhon, LJ ;
Wang, J ;
Smith, DC ;
Lieber, CM .
NATURE, 2002, 415 (6872) :617-620
[10]   GROWTH AND OPTICAL-PROPERTIES OF NANOMETER-SCALE GAAS AND INAS WHISKERS [J].
HIRUMA, K ;
YAZAWA, M ;
KATSUYAMA, T ;
OGAWA, K ;
HARAGUCHI, K ;
KOGUCHI, M ;
KAKIBAYASHI, H .
JOURNAL OF APPLIED PHYSICS, 1995, 77 (02) :447-462