SOBOLEV'S THEOREM FOR DOUBLE PHASE FUNCTIONALS

被引:25
作者
Mizuta, Yoshihiro [1 ]
Ohno, Takao [2 ]
Shimomura, Tetsu [3 ]
机构
[1] 4-13-11 Hachi Hom Matsu Minami, Higashihiroshima 7390144, Japan
[2] Oita Univ, Fac Educ, Dannoharu Oita City 8701192, Japan
[3] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2020年 / 23卷 / 01期
基金
日本学术振兴会;
关键词
Riesz potentials; fractional maximal functions; maximal functions; Sobolev's theorem; Musielak-Orlicz spaces; double phase functionals; continuity; VARIABLE EXPONENT; MAXIMAL OPERATOR; REGULARITY; LEBESGUE; SPACES; POTENTIALS; INEQUALITY; EMBEDDINGS;
D O I
10.7153/mia-2020-23-02
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our aim in this paper is to establish generalizations of Sobolev's theorem for double phase functionals Phi(x,t) =t(p) + {b(x)r(log(e + t))(tau)}(q), where 1 < p <= q < infinity, tau > 0 and b is a nonnegative bounded function satisfying vertical bar b(x) - b(Y)vertical bar <= C vertical bar x - y vertical bar(theta) (log(e + vertical bar x - y vertical bar(-1)))(-tau) for 0 <= theta < 1.
引用
收藏
页码:17 / 33
页数:17
相关论文
共 26 条
[1]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[2]  
ADAMS DR, 1996, FUNCTION SPACES POTE
[3]   NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES [J].
Baroni, P. ;
Colombo, M. ;
Mingione, G. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) :347-379
[4]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[5]  
BOJARSKI B, 1993, STUD MATH, V106, P77
[6]  
Capone C, 2007, REV MAT IBEROAM, V23, P743
[7]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[8]   Eigenvalues for double phase variational integrals [J].
Colasuonno, Francesca ;
Squassina, Marco .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) :1917-1959
[9]   Bounded Minimisers of Double Phase Variational Integrals [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (01) :219-273
[10]   Regularity for Double Phase Variational Problems [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) :443-496