Many lipids are composed of asymmetric tail chains that differ by their molecular weight (MW) and/or degree of saturation. Previous studies found that membrane moduli vary with the degree of lipid tail asymmetry. However, to date little is known regarding the effect (if any) of tail asymmetry on the membrane-induced interactions between embedded proteins. In this paper we use a self-consistent field model to examine the effect of lipid tail asymmetry on membrane proteins. We first examine the case where the overall tail length (sum of both chains) is held constant, which implies that the membrane thickness remains constant as well, independent of tail asymmetry. We find that, in these systems, the membrane area stretch and bending moduli decrease with increasing chain asymmetry, thereby reducing the magnitude of the membrane-induced barrier to protein aggregation. Since in symmetric lipid bilayers the energy barrier is typically of order similar to 1-2 times the thermal energy kT, the asymmetry-induced reduction in barrier height may increase the probability of protein aggregation significantly. In systems where one tail chain is held constant, increasing asymmetry involves changes in the bilayer thickness which are found to dominate any effect arising from the asymmetry. (C) 2007 Elsevier B.V. All rights reserved.