Extremely Superhydrophobic Surfaces with Micro- and Nanostructures Fabricated by Copper Catalytic Etching

被引:75
作者
Lee, Jung-Pil [1 ]
Choi, Sinho [1 ]
Park, Soojin [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Interdisciplinary Sch Green Energy, Ulsan 689798, South Korea
关键词
WATER; WETTABILITY; SILICON; TOPOGRAPHY; POLYMER; FILMS;
D O I
10.1021/la1045354
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We demonstrate a simple method for the fabrication of rough silicon surfaces with micro- and nanostructures, which exhibited superhydrophobic behaviors. Hierarchically rough silicon surfaces were prepared by copper (Cu)-assisted chemical etching process where Cu nanoparticles having particle size of 10-30 nm were deposited on silicon surface, depending on the period of time of electroless Cu plating. Surface roughness was controlled by both the size of Cu nanoparticles and etching conditions. As-synthesized rough silicon surfaces showed water contact angles ranging from 93 degrees to 149 degrees. Moreover, the hierarchically rough silicon surfaces were chemically modified by spin-coating of a thin layer of Teflon precursor with low surface energy. And thus it exhibited nonsticky and enhanced hydrophobic properties with extremely high contact angle of nearly 180 degrees.
引用
收藏
页码:809 / 814
页数:6
相关论文
共 32 条
[1]   Purity of the sacred lotus, or escape from contamination in biological surfaces [J].
Barthlott, W ;
Neinhuis, C .
PLANTA, 1997, 202 (01) :1-8
[2]   Fabrication of superhydrophobic surfaces with controlled topography and chemistry [J].
Blondiaux, N. ;
Scolan, E. ;
Popa, A. M. ;
Gavillet, J. ;
Pugin, R. .
APPLIED SURFACE SCIENCE, 2009, 256 (03) :S46-S53
[3]   Self-cleaning surfaces - virtual realities [J].
Blossey, R .
NATURE MATERIALS, 2003, 2 (05) :301-306
[4]   Wettability of porous surfaces. [J].
Cassie, ABD ;
Baxter, S .
TRANSACTIONS OF THE FARADAY SOCIETY, 1944, 40 :0546-0550
[5]   Nonlithographic Patterning and Metal-Assisted Chemical Etching for Manufacturing of Tunable Light-Emitting Silicon Nanowire Arrays [J].
Chern, Winston ;
Hsu, Keng ;
Chun, Ik Su ;
de Azeredo, Bruno P. ;
Ahmed, Numair ;
Kim, Kyou-Hyun ;
Zuo, Jian-min ;
Fang, Nick ;
Ferreira, Placid ;
Li, Xiuling .
NANO LETTERS, 2010, 10 (05) :1582-1588
[6]   Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces [J].
Cortese, Barbara ;
D'Amone, Stefania ;
Manca, Michele ;
Viola, Ilenia ;
Cingolani, Roberto ;
Gigli, Giuseppe .
LANGMUIR, 2008, 24 (06) :2712-2718
[7]   Low-friction flows of liquid at nanopatterned interfaces [J].
Cottin-Bizonne, C ;
Barrat, JL ;
Bocquet, L ;
Charlaix, E .
NATURE MATERIALS, 2003, 2 (04) :237-240
[8]   A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water [J].
Feng, L ;
Zhang, ZY ;
Mai, ZH ;
Ma, YM ;
Liu, BQ ;
Jiang, L ;
Zhu, DB .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (15) :2012-2014
[9]   Creation of a superhydrophobic surface from an amphiphilic polymer [J].
Feng, L ;
Song, YL ;
Zhai, J ;
Liu, BQ ;
Xu, J ;
Jiang, L ;
Zhu, DB .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (07) :800-802
[10]   Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films [J].
Feng, XJ ;
Feng, L ;
Jin, MH ;
Zhai, J ;
Jiang, L ;
Zhu, DB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (01) :62-63