Uncertainty Quantification for Short Rendezvous Missions Using a Nonlinear Covariance Propagation Method

被引:17
作者
Yang, Zhen [1 ]
Luo, Ya-Zhong [1 ]
Zhang, Jin [1 ]
Tang, Guo-Jin [1 ]
机构
[1] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Changsha 410073, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
POLYNOMIAL CHAOS; ORBITAL DYNAMICS; SPACECRAFT; COMPUTATION; MECHANICS; DESIGN; MODELS;
D O I
10.2514/1.G001712
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A study focuses on answering the two questions encountered in the short rendezvous-phasing mission. To accurately forward propagate the dynamic model uncertainties, initial state uncertainties, and orbital control uncertainties, the spacecraft's dynamic equations are first extended to include the atmospheric density and the J2 perturbation coefficient. State transition tensors A second-order nonlinear covariance propagation method that can handle uncertainties on initial states, model parameters and orbital controls are developed on the (STTs).
引用
收藏
页码:2170 / 2178
页数:9
相关论文
共 35 条
[1]  
[Anonymous], 2011, AIAA J GUIDANCE CONT, DOI DOI 10.2514/1.53793
[2]   Implicit-Runge-Kutta-based methods for fast, precise, and scalable uncertainty propagation [J].
Aristoff, Jeffrey M. ;
Horwood, Joshua T. ;
Poore, Aubrey B. .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2015, 122 (02) :169-182
[3]   Orbit and uncertainty propagation: a comparison of Gauss-Legendre-, Dormand-Prince-, and Chebyshev-Picard-based approaches [J].
Aristoff, Jeffrey M. ;
Horwood, Joshua T. ;
Poore, Aubrey B. .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2014, 118 (01) :13-28
[4]   Asteroid close encounters characterization using differential algebra: the case of Apophis [J].
Armellin, R. ;
Di Lizia, P. ;
Bernelli-Zazzera, F. ;
Berz, M. .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2010, 107 (04) :451-470
[5]   High-order expansion of the solution of preliminary orbit determination problem [J].
Armellin, Roberto ;
Di Lizia, Pierluigi ;
Lavagna, Michele .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2012, 112 (03) :331-352
[6]   Parallel Computation of Trajectories Using Graphics Processing Units and Interpolated Gravity Models [J].
Arora, Nitin ;
Vittaldev, Vivek ;
Russell, Ryan P. .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2015, 38 (08) :1345-1355
[7]  
Battin R. H, 1999, AIAA ED SERIES, P681
[8]  
Casella G., 2001, STAT INFERENCE, P55
[9]  
Fehse W, 2003, Automated Rendezvous and Docking of Spacecraft, DOI DOI 10.1017/CBO9780511543388
[10]   Analytical Nonlinear Propagation of Uncertainty in the Two-Body Problem [J].
Fujimoto, K. ;
Scheeres, D. J. ;
Alfriend, K. T. .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2012, 35 (02) :497-509