Logarithmic Sobolev inequalities and the growth of Lp norms

被引:6
作者
Rothaus, OS [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
关键词
D O I
10.1090/S0002-9939-98-04405-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that many of the recent results on exponential integrability of Lip 1functions, when a logarithmic Sobolev inequality holds, follow from more fundamental estimates of the growth of L-p orms under the same hypotheses.
引用
收藏
页码:2309 / 2314
页数:6
相关论文
共 4 条
[1]   LOGARITHMIC SOBOLEV INEQUALITIES AND EXPONENTIAL INTEGRABILITY [J].
AIDA, S ;
MASUDA, T ;
SHIGEKAWA, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 126 (01) :83-101
[2]  
Aida S, 1994, MATH RES LETT, V1, P75
[3]   ULTRACONTRACTIVITY AND THE HEAT KERNEL FOR SCHRODINGER-OPERATORS AND DIRICHLET LAPLACIANS [J].
DAVIES, EB ;
SIMON, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1984, 59 (02) :335-395
[4]   Remarks on logarithmic Sobolev constants, exponential integrability and bounds on the diameter [J].
Ledoux, M .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1995, 35 (02) :211-220