EFFECTIVE MODELS FOR LONG TIME WAVE PROPAGATION IN LOCALLY PERIODIC MEDIA

被引:5
作者
Abdulle, Assyr [1 ]
Pouchon, Timothee [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Sect Math, ANMC, Stn 8, CH-1015 Lausanne, Switzerland
关键词
homogenization; effective equations; wave equation; heterogeneous media; long time behavior; dispersive waves; a priori error analysis; multiscale method; HETEROGENEOUS MULTISCALE METHOD; FINITE-ELEMENT METHODS; ORDER HYPERBOLIC EQUATIONS; NONLOCAL DISPERSIVE MODEL; HOMOGENIZATION; SCALES; APPROXIMATIONS; CONVERGENCE; CONTINUUM;
D O I
10.1137/17M113678X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A family of effective equations for the wave equation in locally periodic media over long time is derived. In particular, explicit formulas for the effective tensors are provided. To validate the derivation, an a priori error estimate between the effective solutions and the original wave is proved. As the dependence of the estimate on the domain is explicit, the result holds in arbitrarily large periodic hypercube. This constitutes the first analysis for the description of long time effects for the wave equation in locally periodic media. Thanks to this result, the long time a priori error analysis of the numerical homogenization method presented in [A. Abdulle and T. Pouchon, SIAM J. Numer. Anal., 54 (2016), pp. 1507-1534] is generalized to the case of a locally periodic tensor.
引用
收藏
页码:2701 / 2730
页数:30
相关论文
共 46 条
[1]  
Abdulle A, 2017, HANDB NUM ANAL, V18, P545, DOI 10.1016/bs.hna.2016.10.007
[2]  
Abdulle Assyr, 2015, ESAIM: Proceedings and Surveys, V50, P1, DOI 10.1051/proc/201550001
[3]  
Abdulle A., 2016, MATH MODELS METHODS, V26, P2651
[4]   LOCALIZED ORTHOGONAL DECOMPOSITION METHOD FOR THE WAVE EQUATION WITH A CONTINUUM OF SCALES [J].
Abdulle, Assyr ;
Henning, Patrick .
MATHEMATICS OF COMPUTATION, 2017, 86 (304) :549-587
[5]   A PRIORI ERROR ANALYSIS OF THE FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR THE WAVE EQUATION OVER LONG TIME [J].
Abdulle, Assyr ;
Pouchon, Timothee .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (03) :1507-1534
[6]   FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR THE WAVE EQUATION: LONG-TIME EFFECTS [J].
Abdulle, Assyr ;
Grote, Marcus J. ;
Stohrer, Christian .
MULTISCALE MODELING & SIMULATION, 2014, 12 (03) :1230-1257
[7]   FE heterogeneous multiscale method for long-time wave propagation [J].
Abdulle, Assyr ;
Grote, Marcus J. ;
Stohrer, Christian .
COMPTES RENDUS MATHEMATIQUE, 2013, 351 (11-12) :495-499
[8]   The heterogeneous multiscale method [J].
Abdulle, Assyr ;
Weinan, E. ;
Engquist, Bjoern ;
Vanden-Eijnden, Eric .
ACTA NUMERICA, 2012, 21 :1-87
[9]   FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR THE WAVE EQUATION [J].
Abdulle, Assyr ;
Grote, Marcus J. .
MULTISCALE MODELING & SIMULATION, 2011, 9 (02) :766-792
[10]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518