Methanol oxidation on stepped Pt[n(111) x (110)] electrodes:: A chronoamperometric study

被引:123
作者
Housmans, THM [1 ]
Koper, MTM [1 ]
机构
[1] Eindhoven Univ Technol, Schuit Inst Catalysis, Inorgan Chem & Catalysis Lab, NL-5600 MB Eindhoven, Netherlands
关键词
D O I
10.1021/jp034291k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The methanol oxidation reaction has been studied on Pt[n(111) x (110)]-type electrodes in a 0.5 M sulfuric acid and 0.025 M methanol solution, using cyclic voltammetry and chronoamperometry. The voltammetric behavior of methanol on the three electrodes under investigation [Pt(I 11), Pt(554), and Pt(553)] shows that the overall oxidation rate increases with an increasing step density and that the defects are affected more by the presence of methanol than terraces. The latter implies that either the decomposition products of methanol or the methanol itself preferably sit at the steps. Investigation of the chronoamperometric data showed that the steady-state current, recorded at 900 s after the start of the experiment, increases with an increasing step density. Moreover, surfaces with a higher step density display a faster dropping current, which suggests that the decomposition of methanol into CO poisoning species also preferentially takes place on the steps and defects. Unlike the stepped electrodes, most transients recorded on Pt(111) showed an initial current increase, which may be explained by the CO oxidation being faster than the methanol decomposition. This low decomposition rate is probably the result of a sufficiently low defect density and the low methanol concentration used in our experiments. Fitting the chronoamperometric data with a mathematical model, which includes the methanol decomposition reaction, the CO oxidation reaction, and the direct methanol oxidation reaction, suggests that steps and defects catalyze all these reactions. Furthermore, the model indeed predicts that when the CO, oxidation rate is faster than the decomposition rate, a rising current transient can be expected, as was seen for Pt(111).
引用
收藏
页码:8557 / 8567
页数:11
相关论文
共 48 条
[1]   THE ELECTROOXIDATION OF CO - A TEST REACTION IN ELECTROCATALYSIS [J].
BEDEN, B ;
LAMY, C ;
DETACCONI, NR ;
ARVIA, AJ .
ELECTROCHIMICA ACTA, 1990, 35 (04) :691-704
[2]   ELECTROCHEMICAL DETECTION AND CHARACTERIZATION AT PT(N,N,N-2) ORIENTED ELECTRODES OF MULTIATOMIC STEP FORMATION INDUCED BY QUENCHING AT HIGH-TEMPERATURES [J].
CLAVILIER, J ;
RODES, A .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1993, 348 (1-2) :247-264
[3]   INSITU CHARACTERIZATION OF THE PT(S)-[N(111)X(111)] ELECTRODE SURFACES USING ELECTROSORBED HYDROGEN FOR PROBING TERRACE AND STEP SITES [J].
CLAVILIER, J ;
ELACHI, K ;
RODES, A .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1989, 272 (1-2) :253-261
[4]   ELECTROCHEMICAL MONITORING OF THE THERMAL REORDERING OF PLATINUM SINGLE-CRYSTAL SURFACES AFTER METALLOGRAPHIC POLISHING FROM THE EARLY STAGE TO THE EQUILIBRIUM SURFACES [J].
CLAVILIER, J ;
ELACHI, K ;
PETIT, M ;
RODES, A ;
ZAMAKHCHARI, MA .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1990, 295 (1-2) :333-356
[5]   ELECTROCHEMICAL ADSORPTION BEHAVIOR OF PLATINUM STEPPED SURFACES IN SULFURIC-ACID-SOLUTIONS [J].
CLAVILIER, J ;
ARMAND, D ;
SUN, SG ;
PETIT, M .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1986, 205 (1-2) :267-277
[6]   ELECTROCHEMICAL ADSORPTION BEHAVIOR OF PT(100) IN SULFURIC-ACID-SOLUTION [J].
CLAVILIER, J ;
DURAND, R ;
GUINET, G ;
FAURE, R .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1981, 127 (1-3) :281-287
[7]   A periodic density functional theory study of the dehydrogenation of methanol over Pt(111) [J].
Desai, SK ;
Neurock, M ;
Kourtakis, K .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (10) :2559-2568
[8]  
F Allen J Bard L.R., 2001, Electrochemical Methods: Fundamentals and Applications
[9]   A COMPARISON OF ELECTROCHEMICAL AND GAS-PHASE DECOMPOSITION OF METHANOL ON PLATINUM SURFACES [J].
FRANASZCZUK, K ;
HERRERO, E ;
ZELENAY, P ;
WIECKOWSKI, A ;
WANG, J ;
MASEL, RI .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (21) :8509-8516
[10]   Anion adsorption from sulfuric acid solutions on Pt(111) single crystal electrodes [J].
Funtikov, AM ;
Stimming, U ;
Vogel, R .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1997, 428 (1-2) :147-153