Monodromy in the spectrum of a rigid symmetric top molecule in an electric field

被引:37
作者
Kozin, IN
Roberts, RM
机构
[1] Univ Aberdeen, Dept Chem, Aberdeen AB24 3UE, Scotland
[2] Univ Surrey, Dept Math & Stat, Guildford GU2 7XH, Surrey, England
关键词
D O I
10.1063/1.1573633
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We show that for rigid symmetric top molecules in electric fields the phenomenon of monodromy arises naturally as a "defect'' in the lattice of quantum states in the energy-momentum diagram. This makes it impossible to use either the total angular momentum or a pendular quantum number to label the states globally. The monodromy is created or destroyed by classical Hamiltonian Hopf bifurcations from relative equilibria. These phenomena are robust and should be observable in quasi-symmetric top molecules with field strengths epsilon satisfying muepsilon/b > 4.5, where mu is the dipole moment and b the rotational constant perpendicular to the symmetry axis of the molecule. (C) 2003 American Institute of Physics.
引用
收藏
页码:10523 / 10533
页数:11
相关论文
共 43 条
[1]  
Arnol'd V.I., 1997, MATH ASPECTS CLASSIC
[2]   MONODROMY IN THE CHAMPAGNE BOTTLE [J].
BATES, LM .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1991, 42 (06) :837-847
[3]   SPECTROSCOPY OF PENDULAR STATES - THE USE OF MOLECULAR-COMPLEXES IN ACHIEVING ORIENTATION [J].
BLOCK, PA ;
BOHAC, EJ ;
MILLER, RE .
PHYSICAL REVIEW LETTERS, 1992, 68 (09) :1303-1306
[4]   Brute force orientation of asymmetric top molecules [J].
Bulthuis, J ;
Moller, J ;
Loesch, HJ .
JOURNAL OF PHYSICAL CHEMISTRY A, 1997, 101 (41) :7684-7690
[5]  
Child MS, 1999, MOL PHYS, V96, P371, DOI 10.1080/00268979909482971
[6]   Quantum states in a champagne bottle [J].
Child, MS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02) :657-670
[7]  
CUSHMAN R, 1990, LECT NOTES MATH, V1416, P26
[8]   Non-Hamiltonian monodromy [J].
Cushman, R ;
Duistermaat, JJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 172 (01) :42-58
[9]   THE QUANTUM-MECHANICAL SPHERICAL PENDULUM [J].
CUSHMAN, R ;
DUISTERMAAT, JJ .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 19 (02) :475-479
[10]  
CUSHMAN R, 1985, LECT NOTES MATH, V1139, P12