Insight into thermal analysis kinetics of surface protected LiNi0.8Co0.15Al0.05O2 cathode for safe lithium-ion batteries

被引:15
|
作者
Zhao, Huichun [1 ]
Bai, Ying [1 ]
Li, Yu [1 ]
Zhao, Wenbin [1 ]
Ren, Haixia [1 ]
Wang, Xinran [1 ,2 ]
Wu, Chuan [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Yangtze Delta Reg Acad, Jiaxing 314019, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Thermal analysis kinetics; Thermal stability; LiNi0.8Co0.15Al0.05O2; Al2O3 coating layer; APPROXIMATE FORMULA; STABILITY; ELECTROLYTE; DECOMPOSITION; PERFORMANCE; LAYER; LICOO2; LIPF6; ANODE; ARC;
D O I
10.1016/j.ensm.2022.04.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface modification of Ni-rich cathode families has gained the most market interests towards energy-dense lithium-ion batteries (LIBs) due to its ability to strengthen LIBs electrochemical performance. Beyond current understandings, our study of thermal analysis kinetics has first revealed the indispensable role of surface coating against thermal decomposition, which is determinative for LIBs safety and large-scale commercialization. Al2O3 surface protection engages to induce inorganic-rich solid electrolyte interface (SEI) against its decomposition. Furthermore, it limits the formation, propagation and expansion of nanopores and dislocations inside particles, thus restraining transformation-metal ion dissolutions and oxygen releasing, which are the main reason to the stepwise thermal runaway and particle pulverization. Combined with the Arrhenius equation and non-isothermal kinetic equation, the kinetic triplet and decomposition mechanisms are well-defined for the first time, inherently elucidating the reduced decomposition rate and better safety caused by Al2O3-coating. This study has provided kinetic fundamentals and new insights of surface coating towards stable Ni-rich cathode and safe LIBs.
引用
收藏
页码:409 / 420
页数:12
相关论文
共 50 条
  • [21] Factors affecting cycling life of LiNi0.8Co0.15Al0.05O2 for lithium-ion batteriest
    Makimura, Yoshinari
    Sasaki, Tsuyoshi
    Nonaka, Takamasa
    Nishimura, Yusaku F.
    Uyama, Takeshi
    Okuda, Chikaaki
    Itou, Yuichi
    Takeuchi, Yoji
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (21) : 8350 - 8358
  • [22] Y2O3-decorated LiNi0.8Co0.15Al0.05O2 cathode material with improved electrochemical performance for lithium-ion batteries
    Loghavi, Mohammad Mohsen
    Mohammadi-Manesh, Hossein
    Eqra, Rahim
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 848
  • [23] Effect of N/P ratios on the performance of LiNi0.8Co0.15Al0.05O2∥SiOx/Graphite lithium-ion batteries
    Chen, Zhan
    Zhang, Lan
    Wu, Xiangkun
    Song, Kaifang
    Ren, Baozeng
    Li, Tao
    Zhang, Suojiang
    JOURNAL OF POWER SOURCES, 2019, 439
  • [24] Influence of electrode preparation on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 composite electrodes for lithium-ion batteries
    Hai Yen Tran
    Greco, Giorgia
    Taeubert, Corina
    Wohlfahrt-Mehrens, Margret
    Haselrieder, Wolfgang
    Kwade, Arno
    JOURNAL OF POWER SOURCES, 2012, 210 : 276 - 285
  • [25] Mechanical Composite of LiNi0.8Co0.15Al0.05O2/Carbon Nanotubes with Enhanced Electrochemical Performance for Lithium-Ion Batteries
    Zhang, Liping
    Fu, Ju
    Zhang, Chuhong
    NANOSCALE RESEARCH LETTERS, 2017, 12
  • [26] Mechanical Composite of LiNi0.8Co0.15Al0.05O2/Carbon Nanotubes with Enhanced Electrochemical Performance for Lithium-Ion Batteries
    Liping Zhang
    Ju Fu
    Chuhong Zhang
    Nanoscale Research Letters, 2017, 12
  • [27] Effect of calcining oxygen pressure gradient on properties of LiNi0.8Co0.15Al0.05O2 cathode materials for lithium ion batteries
    Nie, Yan
    Xiao, Wei
    Miao, Chang
    Xu, Mingbiao
    Wang, Changjun
    Xiao, Wei (xwylyq2006@126.com), 1600, Elsevier Ltd (334):
  • [28] Template-assisted synthesis of LiNi0.8Co0.15Al0.05O2 hollow nanospheres as cathode material for lithium ion batteries
    Xiaoyu Wu
    Junjie Lu
    Yue Han
    Huayu Wu
    Lingli Bu
    Ju Xie
    Chen Qian
    Haibo Li
    Guowang Diao
    Ming Chen
    Journal of Materials Science, 2020, 55 : 9493 - 9503
  • [29] Effect of calcining oxygen pressure gradient on properties of LiNi0.8Co0.15Al0.05O2 cathode materials for lithium ion batteries
    Nie, Yan
    Xiao, Wei
    Miao, Chang
    Xu, Mingbiao
    Wang, Changjun
    ELECTROCHIMICA ACTA, 2020, 334
  • [30] Towards superior cyclability of LiNi0.8Co0.15Al0.05O2 cathode material for lithium ion batteries via yttrium modification
    Liu, Shuaiwei
    Li, Yunjiao
    Wang, Shilei
    Chen, Yongxiang
    Tan, Zhouliang
    Yang, Jiachao
    Deng, Shiyi
    He, Zhenjiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 874