Improving the mechanical properties and thermal shock resistance of W-Y2O3 composites by two-step high-energy-rate forging

被引:12
作者
He, Chunyu [1 ]
Feng, Fan [2 ]
Wang, Jianbao [2 ]
Huang, Bo [1 ]
Lian, Youyun [2 ]
Song, Jiupeng [3 ,4 ]
Chen, Zhe [2 ]
Liu, Xiang [2 ]
机构
[1] Sun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Zhuhai 519082, Guangdong, Peoples R China
[2] Southwestern Inst Phys, Chengdu 610064, Sichuan, Peoples R China
[3] China Natl R&D Ctr Tungsten Technol, Xiamen 361021, Fujian, Peoples R China
[4] Xihua Univ, Sch Mat Sci & Engn, Chengdu 610039, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
W-Y2O3; composites; plasma facing material; high-energy-rate forging; bending fracture strengths; thermal shock resistance; DOPED TUNGSTEN; DEUTERIUM RETENTION; TENSILE PROPERTIES; RECENT PROGRESS; MICROSTRUCTURE; BEHAVIOR; ALLOYS;
D O I
10.1016/j.ijrmhm.2022.105883
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Yttria dispersion-strengthened tungsten composites with enhanced thermal and mechanical properties were fabricated by powder metallurgical methods in this work. The processing route involves the doping of yttria particles in the tungsten powders by liquid-liquid doping process, followed by hot pressing and two-step high-energy-rate forging (HERF). The microstructure, thermal conductivity, mechanical properties and thermal shock resistance of the hot-pressed W-Y2O3 composites and the HERF processed W-Y2O3 composites were comparatively investigated. The bending strengths of the HERF processed W-Y2O3 composites inc eased significantly compared with that of the hot-pressed W-Y2O3 billets. The HERF W-Y2O material presented a ductile behavior even at room temperature with a maximum flexural strain of 4.4% and a yield stress of 2324.5 MPa. At 100 degrees C, the material also exhibits evident plasticity with a flexural strain of 5.9% and the yield stress is up to 1931.9 MPa. The thermal conductivity of the W-Y2O3 composite is 170 W/mK, which is close to the deformed pure W. The thermal shock response of the HERF processed W-Y2O3 is also evaluated by applying edge-localized mode like high heat loads (100 pulses) with an energy density of 0.16-1 GWm(-2) at various temperatures in an electron beam facility. The thermal shock results indicate that the cracking threshold of the HERF processed W-Y2O3 at RT is is between 0.55 GWm(-2) and 0.66 GWm(-2). The cracking threshold of the HERF W-Y2O3 at 100 degrees C and above is higher than 1 GWm(-2).
引用
收藏
页数:28
相关论文
共 48 条
[1]   Mechanical Behavior of W-Y2O3 and W-Ti Alloys from 25 A°C to 1000 A°C [J].
Aguirre, M. V. ;
Martin, A. ;
Pastor, J. Y. ;
Llorca, J. ;
Monge, M. A. ;
Pareja, R. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2009, 40A (10) :2283-2290
[2]   Hardening of self ion implanted tungsten and tungsten 5-wt% rhenium [J].
Armstrong, D. E. J. ;
Yi, X. ;
Marquis, E. A. ;
Roberts, S. G. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 432 (1-3) :428-436
[3]   W-2 wt.%Y2O3 composite: Microstructure and mechanical properties [J].
Battabyal, M. ;
Schaeublin, R. ;
Spaetig, P. ;
Baluc, N. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 538 :53-57
[4]   Development of tungsten and tungsten alloys for DEMO divertor applications via MIM technology [J].
Blagoeva, D. T. ;
Opschoor, J. ;
van der Laan, J. G. ;
Sarbu, C. ;
Pintsuk, G. ;
Jong, M. ;
Bakker, T. ;
Ten Pierick, P. ;
Nolles, H. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 442 (1-3) :S198-S203
[5]   Deformation induced grain boundaries in commercially pure aluminium [J].
Chang, CP ;
Sun, PL ;
Kao, PW .
ACTA MATERIALIA, 2000, 48 (13) :3377-3385
[6]   Combining the K-bubble strengthening and Y-doping: Microstructure, mechanical/thermal properties, and thermal shock behavior of W-K-Y alloys [J].
Chen, Longqing ;
Li, Sheng ;
Qiu, Wenbin ;
Huang, Bo ;
Lian, Youyun ;
Liu, Xiang ;
Tang, Jun .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2022, 103
[7]   High thermal shock resistance realized by Ti/TiH2 doped tungsten-potassium alloys [J].
Chen, Longqing ;
Huang, Bo ;
Yang, Xiaoliang ;
Lian, Youyun ;
Liu, Xiang ;
Tang, Jun .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 780 :388-399
[8]   Response of yttria dispersion strengthened tungsten simultaneously exposed to steady-state and transient hydrogen plasma [J].
Chen, Z. ;
Li, Y. ;
Lian, Y. Y. ;
Feng, F. ;
Wang, J. B. ;
Tan, Y. ;
Morgan, T. W. ;
Cai, L. Z. ;
Liu, X. ;
Xu, M. ;
Duan, X. R. .
NUCLEAR FUSION, 2020, 60 (04)
[9]   Micro/nano composited tungsten material and its high thermal loading behavior [J].
Fan, Jinglian ;
Han, Yong ;
Li, Pengfei ;
Sun, Zhiyu ;
Zhou, Qiang .
JOURNAL OF NUCLEAR MATERIALS, 2014, 455 (1-3) :717-723
[10]   Refinement of tungsten microstructure upon severe plastic deformation [J].
Ganeev, A. V. ;
Islamgaliev, R. K. ;
Valiev, R. Z. .
PHYSICS OF METALS AND METALLOGRAPHY, 2014, 115 (02) :139-145