Isomonodromic deformations and twisted Yangians arising in Teichmuller theory

被引:16
作者
Chekhov, Leonid [1 ]
Mazzocco, Marta [2 ]
机构
[1] VA Steklov Math Inst, Moscow 117333, Russia
[2] Univ Loughborough, Sch Math, Loughborough LE11 3TU, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
Braid group; Geodesic algebra; Fuchsian system; Frobenius manifold; Monodromy; ORDINARY DIFFERENTIAL-EQUATIONS; HOMOTOPY-GROUPS; MONODROMY; ALGEBRAS; SPACE;
D O I
10.1016/j.aim.2010.12.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we build a link between the Teichmuller theory of hyperbolic Riemann surfaces and isomonodromic deformations of linear systems whose monodromy group is the Fuchsian group associated to the given hyperbolic Riemann surface by the Poincare uniformization. In the case of a one-sheeted hyperboloid with n orbifold points we show that the Poisson algebra D-n of geodesic length functions is the semiclassical limit of the twisted q-Yangian Y-q(t) (o(n)) for the orthogonal Lie algebra o(n) defined by Molev, Ragoucy and Sorba. We give a representation of the braid-group action on D-n in terms of an adjoint matrix action. We characterize two types of finite-dimensional Poissonian reductions and give an explicit expression for the generating function of their central elements. Finally, we interpret the algebra D-n as the Poisson algebra of monodromy data of a Frobenius manifold in the vicinity of a non-semi-simple point. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:4731 / 4775
页数:45
相关论文
共 38 条
[1]  
[Anonymous], 1974, Reports on Mathematical Physics, V5, P121, DOI 10.1016/0034-4877(74)90021-4
[2]  
[Anonymous], PUBL RIMS KYOTO U
[3]  
[Anonymous], P STEKLOV I MATH
[4]  
[Anonymous], 1983, Progr. Math.
[5]  
Audin M, 1997, NATO ADV SCI I C-MAT, V488, P1
[6]  
Bolibruch A.A., 1993, DEV MATH MOSCOW SCH, P54
[7]   A symplectic groupoid of triangular bilinear forms and the braid group [J].
Bondal, AI .
IZVESTIYA MATHEMATICS, 2004, 68 (04) :659-708
[8]   Riemann surfaces with orbifold points [J].
Chekhov, L. O. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2009, 266 (01) :228-250
[9]   Orbifold Riemann surfaces and geodesic algebras [J].
Chekhov, L. O. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (30)
[10]   Shear coordinate description of the quantized versal unfolding of a D4 singularity [J].
Chekhov, Leonid ;
Mazzocco, Marta .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (44)