Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release

被引:241
作者
Chang, Baisong [1 ,2 ]
Sha, Xianyi [3 ]
Guo, Jia [1 ,2 ]
Jiao, Yunfeng [1 ,2 ]
Wang, Changchun [1 ,2 ]
Yang, Wuli [1 ,2 ]
机构
[1] Fudan Univ, Key Lab Mol Engn Polymers, Minist Educ, Shanghai 200433, Peoples R China
[2] Fudan Univ, Dept Macromol Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Dept Pharmaceut, Sch Pharm, Shanghai 200433, Peoples R China
基金
美国国家科学基金会;
关键词
BIOMEDICAL APPLICATIONS; DELIVERY-SYSTEM; CARRIER SYSTEM; MICROGELS; CANCER; PARTICLES; MICROCONTAINERS; NANOTECHNOLOGY; NANOSPHERES; DOXORUBICIN;
D O I
10.1039/c1jm10631g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, a kind of core-shell composite microsphere was prepared based on poly(N-isopropylacrylamide-co-methacrylic acid) (P(NIPAM-co-MAA)) coated magnetic mesoporous silica nanoparticles (M-MSN) via precipitation polymerization. The composite microsphere presented a thermo/pH-coupling sensitivity and the volume phase transition could be precisely regulated by the molar ratio of MAA to NIPAM or the concentration of NaCl. At physiological conditions (37 degrees C, 0.15 M NaCl), the P(NIPAM-co-MAA) shell underwent a distinct transition from a swollen state in pH 7.4 to a collapsed state in pH 5.0, so that the polymer shell was active in moderating the diffusion of embedded drugs in-and-out of the pore channels of MSN. Doxorubicin hydrochloride (DOX) was applied as a model drug and the behaviors of drug storage/release were investigated. The drug loaded behavior was pH-dependent, and the composite microsphere had a drug embed efficiency of about 91.3% under alkaline conditions. The cumulative in vitro release of the DOX-loaded composite microsphere showed a low level of leakage below the volume phase transition temperature (VPTT) and was significantly enhanced above its VPTT, exhibiting an apparent thermo/pH-response controlled drug release. The cytotoxicity assay of a blank carrier to normal cells indicated that the composite microspheres were suitable as drug carriers, while the DOX-loaded composite microspheres had a similar cytotoxicity to HeLa cells compared with free DOX. Therefore, the thermo/pH-sensitive composite microsphere could, in principle, be used for in vivo cancer therapy with a low premature drug release during blood circulation whilst having a rapid release upon reaching tumor tissues.
引用
收藏
页码:9239 / 9247
页数:9
相关论文
共 50 条
[1]   Surface functionalization of magnetic mesoporous silica nanoparticles for controlled drug release [J].
Chang, Baisong ;
Guo, Jia ;
Liu, Congying ;
Qian, Ji ;
Yang, Wuli .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (44) :9941-9947
[2]   Co-delivery of Doxorubicin and Bcl-2 siRNA by Mesoporous Silica Nanoparticles Enhances the Efficacy of Chemotherapy in Multidrug-Resistant Cancer Cells [J].
Chen, Alex M. ;
Zhang, Min ;
Wei, Dongguang ;
Stueber, Dirk ;
Taratula, Oleh ;
Minko, Tamara ;
He, Huixin .
SMALL, 2009, 5 (23) :2673-2677
[3]   Rational Synthesis of Magnetic Thermosensitive Microcontainers as Targeting Drug Carriers [J].
Chen, Li-Bo ;
Zhang, Feng ;
Wang, Chang-Chun .
SMALL, 2009, 5 (05) :621-628
[4]   Therapeutic nanoparticles for drug delivery in cancer [J].
Cho, Kwangjae ;
Wang, Xu ;
Nie, Shuming ;
Chen, Zhuo ;
Shin, Dong M. .
CLINICAL CANCER RESEARCH, 2008, 14 (05) :1310-1316
[5]   Active loading and tunable release of doxorubicin from block copolymer vesicles [J].
Choucair, A ;
Soo, PL ;
Eisenberg, A .
LANGMUIR, 2005, 21 (20) :9308-9313
[6]   Temperature responsive solution partition of organic-inorganic hybrid poly(N-isopropylacrylamide)-coated mesoporous silica nanospheres [J].
Chung, Po-Wen ;
Kumar, Rajeev ;
Pruski, Marek ;
Lin, Victor S. -Y. .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (09) :1390-1398
[7]   Nanoparticle therapeutics: an emerging treatment modality for cancer [J].
Davis, Mark E. ;
Chen, Zhuo ;
Shin, Dong M. .
NATURE REVIEWS DRUG DISCOVERY, 2008, 7 (09) :771-782
[8]   Preparation, characterization, and application of multistimuli-responsive microspheres with fluorescence-labeled magnetic cores and thermoresponsive shells [J].
Deng, YH ;
Wang, CC ;
Shen, XZ ;
Yang, WL ;
An, L ;
Gao, H ;
Fu, SK .
CHEMISTRY-A EUROPEAN JOURNAL, 2005, 11 (20) :6006-6013
[9]  
ELAISSARI A, 2007, HDB SURFACE COLLOID, P539
[10]   Thermally sensitive colloidal particles: From preparation to biomedical applications [J].
Elaissari, Abdelhamid .
SMART COLLOIDAL MATERIALS, 2006, 133 :9-14