An efficient approach based on Legendre-Gauss-Lobatto quadrature and discrete shifted Hahn polynomials for solving Caputo-Fabrizio fractional Volterra partial integro-differential equations

被引:14
作者
Dehestani, H. [1 ]
Ordokhani, Y. [1 ]
机构
[1] Alzahra Univ, Fac Math Sci, Dept Math, Tehran, Iran
关键词
Discrete shifted Hahn polynomials; Caputo-Fabrizio derivative; Legendre-Gauss-Lobatto quadrature method; Volterra partial integro-differential equations; SCHEME; SYSTEM;
D O I
10.1016/j.cam.2021.113851
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the current study, we provide a novel technique based on discrete shifted Hahn polynomials and Legendre-Gauss-Lobatto quadrature method for solving Caputo-Fabrizio fractional Volterra partial integro-differential equations (CFF-VPIDEs). The process of numerical algorithm contains the modified operational matrices (MOMs) and complement vectors (CVs), which directly influence the accuracy of the approach. Also, we expand the Volterra integral part of the equation with the help of the Legendre-Gauss- Lobatto quadrature method. The composition of the novel operational matrices with the Legendre-Gauss-Lobatto quadrature rule creates high precision and efficient method. Further, we present the error analysis of our scheme. Finally, to confirm the accuracy of theoretical results, we examine several examples. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 31 条
  • [1] Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates
    Al-Smadi, Mohammed
    Abu Arqub, Omar
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 342 (280-294) : 280 - 294
  • [2] A time-fractional generalised advection equation from a stochastic process
    Angstmann, C. N.
    Henry, B. I.
    Jacobs, B. A.
    McGann, A. V.
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 102 : 175 - 183
  • [3] An explicit numerical scheme for solving fractional order compartment models from the master equations of a stochastic process
    Angstmann, Christopher N.
    Henry, Bruce, I
    Jacobs, Byron A.
    McGann, Anna, V
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 68 : 188 - 202
  • [4] Numerical solutions of nonlinear two-dimensional partial Volterra integro-differential equations by Haar wavelet
    Babaaghaie, A.
    Maleknejad, K.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 317 : 643 - 651
  • [5] Numerical solution of variable-order fractional integro-partial differential equations via Sinc collocation method based on single and double exponential transformations
    Babaei, A.
    Moghaddam, B. P.
    Banihashemi, S.
    Machado, J. A. T.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 82 (82):
  • [6] Baik J., 2007, ANN MATH STUDIES, V164
  • [7] Canuto C., 2007, SCIENTIF COMPUT, DOI [10.1007/978-3-540-30728-0, 10.1007/978-3-540-30726-6]
  • [8] Caputo M., 2015, Prog. Fract. Differ. Appl, V1, P73, DOI [10.12785/pfda/010201, DOI 10.12785/PFDA/010201]
  • [9] Optimal observer-based feedback control for linear fractional-order systems with periodic coefficients
    Dabiri, Arman
    Butcher, Eric A.
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2019, 25 (07) : 1379 - 1392
  • [10] Fractional-order Legendre-Laguerre functions and their applications in fractional partial differential equations
    Dehestani, H.
    Ordokhani, Y.
    Razzaghi, M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 336 : 433 - 453